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Introduction
Hyperovals are fascinating combinatorial objects in finite Desarguesian planes of even
order q. They are maximum size arcs, that is, sets of q + 2 points with no three points
being on a single line. Their study was pioneered by Beniamino Segre in the 1950s,
and much research since then has given rise to many characterizations, connections to
other areas, and a multitude of examples which have been almost completely sorted
in a number of infinite families and whose properties have been diligently investigated.
However, despite all this work, hyperovals continue to fiercely resist a complete classi-
fication, indicating that this is a very hard problem.

One particularly fruitful connection is that hyperovals may be represented by a spe-
cific class of permutation polynomials over binary finite fields called o-polynomials.
This association allows for a reduction to an algebraic problem, so that a major part of
the study of hyperovals is actually the study of specific polynomials over finite fields.
One goal of this thesis is to survey what is known about o-polynomials.

There are relations between hyperovals and various other geometric and combinatorial
objects, see for example [13]. Other applications include the cryptographically relevant
bent functions [15] and designs [16, 29]. They also play a role in the MDS conjecture
in coding theory, see for example [2].

The application we focus on is the connection of o-polynomials to the 2-to-1 poly-
nomials. An interesting class of 2-to-1 polynomials are the 2-to-1 binomials, which
are relevant in the study of finite fields, see for example [30]. Recently, Kölsch and
Kyureghyan [25] proved that so-called o-monomials induce 2-to-1 binomials and vice
versa. This allows for a convenient construction of 2-to-1 binomials. There is also
an equivalence relation called o-equivalence on the set of o-polynomials. Considering
its equivalence classes, one can find some transformations mapping o-monomials to
different o-monomials. These different o-monomials then give rise to different 2-to-1
binomials. Given an o-monomial from the known families, finding explicit formulas for
the o-equivalent o-monomials and then giving the ensuing list of 2-to-1 binomials is the
other goal of this thesis.

After beginning with a brief introduction in Chapter 1 to projective planes and their
collineations, we turn to the mostly combinatorial elementary properties of hyperovals
and how to represent them using o-polynomials in the beginning of Chapter 2. Then
we focus on the fascinating question of exactly when o-polynomials are o-equivalent.
Various possible transformations have been identified in the past, which are surveyed in
[5]. A systematic study of all the possible transformations was started by Penttila and
O’Keefe through the introduction of the magic action [35]. Using this powerful machin-
ery they found several transformations, which together fully explain a more restricted
equivalence relation we call os-equivalence. As a second step, in [15] these results
were lifted to explain o-equivalence as well by Davidova, Budaghyan, Carlet, Helleseth,
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Introduction

Ihringer, and Penttila by considering one further transformation. We replicate this
development in greater detail and correct some technical issues as well. Further, we
apply this theory to the case of o-monomials and obtain a new proof that each equiv-
alence class contains at most six different o-monomials. The arguments required here
are mostly of algebraic nature.

Next we turn our attention to the known families of hyperovals and the known o-
polynomials in Chapter 3. As we intend to continue using the o-monomials for our
application, we treat them more carefully by reproducing proofs that show that they
are indeed o-monomials. We survey the non-monomial o-polynomials and elucidate
only briefly how they were found. Following this, for an o-monomial from the list of
the known families we calculate explicit formulas for all the o-equivalent o-monomials.

As the last step in preparation for our application, we illuminate the known link
between the o-polynomials and the 2-to-1 polynomials in detail using a mixture of
combinatorial and algebraic arguments in the first half of Chapter 4. By combining
this with our list of o-monomials, we obtain a list of 2-to-1 binomials.

Finally, in the second half of Chapter 4, we generalize some of the applications to the
case of odd characteristic, where so far this connection has not been explored. Many
arguments and results can be transferred from the even case and as a conclusion to this
thesis we achieve a complete classification of a specific class of 2-to-1 binomials.

For this work we assume some familiarity with finite fields, specifically with the
subgroups of cyclic groups and the trace map, in addition to the basic notions. Other
concepts will be introduced as required. We follow the usual convention of identifying
polynomials with the maps they induce, although we sometimes mention this more
explicitly when a map is given in non-polynomial form.
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1 Preliminaries
In this chapter we briefly introduce the necessary definitions and the background infor-
mation needed. Our references for this are [1] and [24]. Let q denote a prime power.

1.0.1 Definition. The projective plane PG(2, q) is defined as the set of all subspaces of
the vector space F3

q. The points of the plane are the one dimensional subspaces denoted
by

(x1, x2, x3) :=
〈x1

x2
x3

〉

and its lines are the two dimensional subspaces. Incidence is defined via inclusion in
F3

q: A point x ≤ F3
q is incident with a line l ≤ F3

q if x is a subspace of l. In this case
we write x ∈ l and generally use terms common to geometry. Further, we call points
collinear if there is a line containing them.

As a point is a vector space, one can always assume one of its coordinates is 1 and we
will consistently use the first nonzero coordinate for this normalization, except when
describing lines.

The projective plane PG(2, q) is called the Desarguesian plane of order q. Its lines,
the two dimensional subspaces, are uniquely determined by their one dimensional or-
thogonal complement, so by a point.

1.0.2 Notation (Lines of PG(2, q)). The lines of PG(2, q) are

• la,b :=
〈( a

b
1

)〉⊥
for a, b ∈ Fq,

• la :=
〈( a

1
0

)〉⊥
for a ∈ Fq, and

• l∞ :=
〈( 1

0
0

)〉⊥
.

Next, we give some of the most important properties that we use later.

1.0.3 Lemma (Properties of PG(2, q)). The projective plane PG(2, q) has the following
properties.

1. There are exactly q2 + q + 1 points and also exactly q2 + q + 1 lines.

2. For two distinct points there is a unique line containing them both and two distinct
lines meet in a unique point.
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1 Preliminaries

3. A point is contained in exactly q+ 1 lines and a line contains exactly q+ 1 points.

We write the unique line containing the points A and B as A ∨ B. Similarly, the
unique point contained in the lines l and g is written as l ∧ g.

An important part of the study of projective planes are its collineations, which are
incidence preserving bijective maps from the plane to itself. To cover them, we need
the notion of group actions, for which we follow [26].

1.0.4 Definition (Group Action). Let G be a group with identity e and let X be a
set. A group action of G on X is a map G × X → X, written (g, x) 7→ gx, with the
properties

(i) ex = x for all x ∈ X and

(ii) (g1g2)x = g1(g2x) for all g1, g2 ∈ G and x ∈ X.

We say the group G acts on X. The sets

xG := {gx : g ∈ G}

for x ∈ X are called the orbits and the action is called transitive if X itself is an orbit.
Further, for a subset A ⊆ X the set

{g ∈ G : gA = A}

is called the stabilizer of A.

Now we can introduce the group of collineations and the group of projectivities. They
are bijective maps PG(2, q) → PG(2, q), induced by (semi-) linear maps F3

q → F3
q.

1.0.5 Definition. Define

PΓL(3, q) := {ψ : PG(2, q) → PG(2, q), x 7→ Axγ : A ∈ GL(3, q), γ ∈ Aut(Fq)},

the group of collineations of PG(2, q), where by xγ we mean the automorphism γ applied
to (a representative of) x component-wise. Define further

PGL(3, q) := {φ : PG(2, q) → PG(2, q), x 7→ Ax : A ∈ GL(3, q)},

the group of projectivities of PG(2, q).

These groups act on PG(2, q) by mapping an element of PG(2, q) just as the element
of PΓL(3, q), respectively PGL(3, q), would. Collineations are precisely those bijective
maps, which preserve incidence. Therefore, a mapping rule for the points of PG(2, q)
suffices to describe a collineation.

Equivalence of two point sets of PG(2, q) is to be understood as equivalence under
PΓL(3, q).

1.0.6 Definition. Two sets of points S1,S2 of PG(2, q) are equivalent if there is a
collineation φ ∈ PΓL(3, q) with φS1 = S2.
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A set of four points of PG(2, q), no three of them collinear, is called a frame of
PG(2, q). One simple example is the fundamental quadrangle

{(1, 0, 0), (1, 1, 1), (0, 1, 0), (0, 0, 1)}.

An element of PGL(3, q) is uniquely determined by its values on a frame of PG(2, q)
and the group acts transitively on the set of frames of PG(2, q) (by mapping each point
of the frame individually).

Finally, we would like to mention that there is a more abstract notion of a projective
plane with properties as in Lemma 1.0.3, of which PG(2, q) is only one example, but
not the only one.
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2 o-Polynomials
In this chapter we introduce hyperovals and the functions describing them, the o-
polynomials.

2.1 Ovals and Hyperovals
2.1.1 Basic Objects
In this subsection we start by describing ovals and hyperovals and their basic properties.
For the first few (mostly counting) arguments we follow [22]. Although we state the
results for the projective plane PG(2, q), these basic properties remain valid for arbitrary
projective planes.

2.1.1 Definition (k-Arc). A k-arc in the projective plane PG(2, q) is a set of k points
of PG(2, q), for which no three of them are collinear.

2.1.2 Definition. Let A be a k-arc of PG(2, q). An external line of A is a line of
PG(2, q), which does not meet A, a tangent of A is a line of PG(2, q) meeting A in
exactly one point and a bisecant of A is a line of PG(2, q) meeting A in exactly two
points.

Note that there cannot be a line meeting the k-arc A in more than two points,
because these points would be collinear. Next, we count the external lines, tangents
and bisecants, with the goal of understanding maximum size arcs.

2.1.3 Lemma. Let A be a k-arc of PG(2, q) and P be a point of A. Then

(i) the number of tangents through P is t := t(P ) := q + 2 − k,

(ii) the number of external lines is τ0 := (q−1)q
2 + t(t−1)

2 ,

(iii) the number of tangents is τ1 := kt, and

(iv) the number of bisecants is τ2 := k(k−1)
2 .

Proof. There are q+1 lines through P , as PG(2, q) has order q. Furthermore, there are
no external lines through P and we can find all bisecants meeting A in P by constructing
the unique lines from P to each of the remaining k − 1 points of A. Thus we conclude
that there are

q + 1 − (k − 1) = q + 2 − k = t
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2.1 Ovals and Hyperovals

tangents through P . Because two points of A do not share tangents, there are kt = τ1
tangents overall. We can find all bisecants of A by choosing two points of A and
constructing the unique line incident with both points. Thus we have τ2 =

(
k
2

)
= k(k−1)

2
bisecants. Finally, there are q2 + q + 1 lines in PG(2, q) overall, so we calculate

τ0 = q2 + q + 1 − kt− k(k − 1)
2 = q2 + q + 1 − 2kt+ k(k − 1)

2

= 2q2 + 2q + 2 − k(k + 2t− 1)
2 = 2q2 + 2q + 2 − (q + 2 − t)(q + t+ 1)

2

= 2q2 + 2q + 2 − q2 − qt− q − 2q − 2t− 2 + qt+ t2 + t

2

= q2 − q + t2 − t

2 = q(q − 1)
2 + t(t− 1)

2 ,

where we substituted k = q + 2 − t.

2.1.4 Definition. Let A be a k-arc of PG(2, q) and let Q be a point not on A. Then let
σi(Q) denote the number of lines through Q meeting A in exactly i points for i = 0, 1, 2.

2.1.5 Lemma. Let A be a k-arc of PG(2, q) and let Q be a point not on A. Then we
have σ1(Q) + 2σ2(Q) = k.

Proof. Consider the lines lP from Q to a point P of A. If lP is tangent, it will appear
only once when going through all the points P . If lP is a bisecant, it will appear twice
when going through the points P . So we have σ1(Q) + 2σ2(Q) = k.

2.1.6 Theorem. Let A be a k-arc in PG(2, q). Then

k ≤

q + 2 : q even,
q + 1 : q odd.

Proof. By Lemma 2.1.3 we have 0 ≤ t = q + 2 − k tangents, so k ≤ q + 2. Let q
be odd now and assume there is a (q + 2)-arc A. Then by Lemma 2.1.3 there are no
tangents to A. Picking a point Q ∈ PG(2, q) \ A and applying Lemma 2.1.5 we get
2σ2(Q) = k = q + 2. As q + 2 is odd, we have a contradiction.

2.1.7 Definition (Oval). An oval O of PG(2, q) is a set of q + 1 points, for which no
three of them are collinear. Equivalently, an oval is a (q + 1)-arc of PG(2, q).

2.1.8 Definition (Hyperoval). A hyperoval H of PG(2, q) is a set of q + 2 points,
for which no three of them are collinear. Equivalently, a hyperoval is a (q + 2)-arc of
PG(2, q).

Theorem 2.1.6 implies that ovals are the largest arcs for q odd and that hyperovals
may only exist when q is even, i.e. when the characteristic of the underlying field Fq is
two. These bounds are sharp, see Example 2.1.16 for a hyperoval and Example 4.2.4
for an oval. Note that ovals in odd characteristic are very well understood via Segre’s
Theorem, which we state and use in Subsection 4.2.3. Also note that in earlier literature
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2 o-Polynomials

the term oval was used to denote arcs of maximum size and that the distinction between
ovals and hyperovals came only later (see for example the definitions given in the book
[22, Chapter 8] and the survey [42]).

Next, we illustrate the connection between ovals and hyperovals in characteristic two.

2.1.9 Lemma. Let q be even and O be an oval of PG(2, q). Then two distinct tangents
of O do not intersect on a bisecant of O.

Proof. Consider Q ∈ PG(2, q) \ O. By Lemma 2.1.5 we have σ1(Q) + 2σ2(Q) = q + 1.
Because q + 1 is odd, σ1(Q) must be odd as well, so σ1(Q) ≥ 1.

Let l be an arbitrary bisecant of O. Then for every point P ∈ l, there is at least one
tangent of O meeting P : For points P outside of O, the preceding argument holds and
for points P inside O Lemma 2.1.3 implies that there are exactly q + 2 − (q + 1) = 1
tangents meeting P .

Again by Lemma 2.1.3 there are q+1 tangents to O overall. On an arbitrary bisecant
l of O there are q+ 1 points and every one of these points has a tangent meeting it, by
the preceding argument. Furthermore, two distinct points on l cannot share a single
tangent, as the tangent would be uniquely identified as l by the two points. So we have
a unique tangent for each point of l. In particular, no two tangents meet in the same
point of l.

2.1.10 Theorem. Let q be even and O be an oval of PG(2, q). Then the q+1 tangents
of O are concurrent, i.e. they meet in a common point. Furthermore, given a hyperoval
H of PG(2, q), we can obtain an oval by deleting any point of H.

Proof. Let Q be the meet of two distinct tangents of O. Then by Lemma 2.1.9 Q does
not lie on a bisecant, so σ2(Q) = 0. An application of Lemma 2.1.5 yields σ1(Q) = q+1,
so all q + 1 tangents meet in Q.

For the second statement, we note that deleting points from an arc preserves the
property of no three points being collinear. Thus deleting an arbitrary point from H
gives a (q + 1)-arc, so an oval.

The preceding basic property of ovals in even characteristic is very important and
implies a unique extension of ovals to hyperovals. Note that Theorem 2.1.6 implies that
this is not possible if the characteristic is odd. The common point is called the nucleus.

2.1.11 Definition (Nucleus). Let O be an oval in PG(2, q) for q even. The common
point of the tangents of O described in Theorem 2.1.10 is called the nucleus of O.

2.1.12 Lemma (Extension of Ovals to Hyperovals). An oval O in PG(2, q), with q
even, may be uniquely extended to a hyperoval by appending its nucleus.

Proof. Lemma 2.1.9 implies that appending the nucleus of O does not add a point to
a previous bisecant, so there are no three collinear points and we have a hyperoval.

Suppose we added another point Q ∈ PG(2, q) \ O to O. The point Q can be only
on one tangent, because otherwise Q would be the intersection of two, and hence of
all, tangents. So by Lemma 2.1.5 we have 1 + 2σ2(Q) = q + 1, thus Q is on at least
one bisecant. Appending Q to O would then produce three collinear points. Hence the
extension is unique.
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2.1 Ovals and Hyperovals

2.1.2 Describing Ovals and Hyperovals by o-Polynomials
In this subsection we define and use o-polynomials to characterize ovals and hyperovals,
following [28, Section 3]. Let q = 2n with n ∈ N throughout this subsection.

The first important observation is that collineations take hyperovals to hyperovals,
as they preserve incidence relations between the points of the hyperoval. Because for
ovals and hyperovals no three points are collinear, any four points of the oval or hyper-
oval make up a frame of PG(2, q). Since PΓL(3, q) acts transitively on the frames of
PG(2, q), for any hyperoval there is an equivalent hyperoval containing the fundamental
quadrangle

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.

Under this assumption hyperovals can be described with o-polynomials.

2.1.13 Definition (o-Polynomial). The polynomial f ∈ Fq[x] is called an o-polynomial
if the set

H(f) := {(1, s, f(s)) : s ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)}

is a hyperoval containing the fundamental quadrangle.

2.1.14 Definition. A monomial xe ∈ Fq[x] is called an o-monomial, if it is an o-
polynomial and the exponent e is called an o-exponent if the monomial xe is an o-
monomial.

2.1.15 Theorem. Let f ∈ Fq[x] be a polynomial. The set H(f) is a hyperoval if and
only if

(i) f is a permutation polynomial with f(0) = 0 and f(1) = 1 and

(ii) the polynomial ga(x) = (f(x+ a) + f(a))xq−2 is a permutation polynomial for all
a ∈ Fq.

Furthermore, every hyperoval H containing the fundamental quadrangle may be ex-
pressed as H(f) with an o-polynomial f .

Proof. Let H be a hyperoval containing the fundamental quadrangle and set

P1 = (1, 0, 0), A = (0, 1, 0), B = (0, 0, 1), P2 = (1, 1, 1)

and let P3, . . . , Pq denote the remaining points of H. We first focus on condition (i),
yielding a polynomial f describing H as H(f).

Consider the line at infinity, that is,

l∞ = A ∨B =
〈0

1
0

 ,
0

0
1

〉 =
〈1

0
0

〉
⊥

.
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2 o-Polynomials

No other point of H is on l∞, because no three points are collinear. Thus every other
point of H is of the form (1, c, d) with c, d ∈ Fq. So, let ci, di ∈ Fq such that Pi =
(1, ci, di) for i = 1, . . . , q. Now assume ci = cj for a pair (i, j) with 1 ≤ i ̸= j ≤ q.
Consider the line

h := lci
= B ∨ Pi =

〈0
0
1

 ,
 1
ci

di

〉 .
We have  1

cj

dj

 =

 1
ci

di

+ (di + dj)

0
0
1

 ,
so Pj ∈ h. But then there would be three distinct points of H on the same line h, so
we conclude ci ̸= cj.

Analogously assume di = dj for a pair (i, j) with 1 ≤ i ̸= j ≤ q. This time we
consider the line

h := ldi,0 = A ∨ Pi =
〈0

1
0

 ,
 1
ci

di

〉 .
We have  1

cj

dj

 =

 1
ci

di

+ (ci + cj)

0
1
0


and thus Pj ∈ h. This, again, is a contradiction to H being a hyperoval, so we get
di ̸= dj.

All in all, we obtain that the map f : ci 7→ di for i = 1, . . . , q is a permutation
satisfying f(0) = 0 and f(1) = 1, since P1 = (1, 0, 0) and P2 = (1, 1, 1).

On the other hand, if a polynomial f ∈ Fq[x] satisfies condition (i), H(f) is a set
of q + 2 distinct points containing the fundamental quadrangle and there are only two
points on the line at infinity. Thus only the equivalence of condition (ii) to no three
points of P1, . . . , Pq being collinear has yet to be shown.

Let a, b, c ∈ Fq be distinct elements. Then the distinct points

〈 1
a

f(a)

〉 ,〈
 1

b
f(b)

〉 ,〈
 1

c
f(c)

〉

10



2.1 Ovals and Hyperovals

are not collinear if and only if

det

 1 1 1
a b c

f(a) f(b) f(c)

 ̸= 0.

A computation of the determinant yields

det

 1 1 1
a b c

f(a) f(b) f(c)

 = bf(c) + cf(a) + af(b) + bf(a) + cf(b) + af(c) ̸= 0

and thus

b (f(a) + f(c)) + af(c) ̸= c (f(a) + f(b)) + af(b) (2.1)

for all distinct a, b, c ∈ Fq. By adding af(a) to both sides, Formula (2.1) is equivalent
to

(a+ b) (f(a) + f(c)) ̸= (a+ c) (f(a) + f(b))

and thus to

(f(a) + f(c)) (a+ c)q−2 ̸= (f(a) + f(b)) (a+ b)q−2 (2.2)

for all distinct a, b, c ∈ Fq. By counting the image size of

Fq \ {a} → F∗
q, t 7→ (f(t) + f(a))(t+ a)q−2

Formula (2.2) is seen to be equivalent to{
(f(t) + f(a))(t+ a)q−2 : t ∈ Fq \ {a}

}
= F∗

q (2.3)

for all a ∈ Fq. Finally, through substituting x = t + a, Formula (2.3) is equivalent to
the polynomial ga(x) = (f(x+ a) + f(a))xq−2 being a permutation polynomial for all
a ∈ Fq.

We can now give a simple example for an o-polynomial and a hyperoval.

2.1.16 Example. The polynomial f(x) = x2 is an o-polynomial for q even. Indeed,
since q is even, the map x 7→ x2 is a bijection. We have f(1) = 1 and f(0) = 0, thus
condition (i) is met. For condition (ii), we have

ga(x) =
(
(x+ a)2 + a2

)
xq−2 = xq = x,

so ga(x) is a permutation polynomial for all a ∈ Fq. The resulting hyperoval H(f) is
called the regular hyperoval. See Figure 2.1 for this example in PG(2, 2).

There are some restrictions on the form of o-polynomials.
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〈(
1
1
0

)〉

〈(
1
0
0

)〉

〈(
1
0
0

)〉

〈(
1
0
0

)〉 〈(
1
0
0

)〉

〈(
1
0
0

)〉

〈(
1
0
0

)〉

〈(
1
1
0

)〉

〈(
0
1
0

)〉

〈(
1
0
0

)〉

〈(
0
0
1

)〉 〈(
1
1
1

)〉

〈(
0
1
1

)〉

〈(
1
0
1

)〉

Figure 2.1: The hyperoval H(x2) with its points shaded in PG(2, 2).

2.1.17 Corollary. Let f ∈ Fq[x] be an o-polynomial. Then f is of the form

f(x) =
q−2

2∑
j=1

b2jx
2j

with b2j ∈ Fq for j = 1, . . . , q−2
2 .

Proof. Let f(x) = ∑q−1
j=0 bjx

j. Firstly, because f(0) = 0, we have b0 = 0. For a ∈ Fq we
have

ga(x) = (f(x+ a) + f(a))xq−2 = xq−2

q−1∑
j=1

bj

j∑
i=0

(
j

i

)
aj−ixi +

q−1∑
j=1

bja
j


= xq−2

q−1∑
j=1

j∑
i=1

(
j

i

)
bja

j−ixi


=

q−1∑
j=1

j∑
i=1

(
j

i

)
bja

j−ixi−1.

We therefore obtain

ga(0) =
q−1∑
j=1

(
j

1

)
bja

j−1 = b1 + a2b3 + . . .+ aq−2bq−1 = 0

for all a ∈ Fq by condition (ii). Equivalently, A
( b1

...
bq−1

)
= 0, where A = (a2i)0≤i≤ q−2

2 , a∈Fq
.
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2.2 Equivalence of o-Polynomials

Because A contains a Vandermonde matrix, it has full rank, so b1 = b3 = . . . = bq−1 = 0
follows.

Note that the preceding corollary is a special case (b = 1) of a more general condition
due to Glynn [19], which we only state for the sake of brevity.

2.1.18 Definition. Let a, b ∈ N. The number a covers b if for every 1 in the binary
expansion of b there is a 1 in the binary expansion of a at the same position as well.

2.1.19 Theorem. A polynomial f ∈ Fq[x] with f(0) = 0 and f(1) = 1 is an o-
polynomial if and only if the coefficient of xa in f(x)b mod xq + x is zero for all pairs
(a, b) with 1 ≤ b ≤ a ≤ q − 1 and b ̸= q − 1 such that a covers b.

2.2 Equivalence of o-Polynomials
The goal of this section is to understand the notion of o-equivalence, that is, when
two o-polynomials describe hyperovals which are equivalent under PΓL(3, q). A nat-
ural question to ask would be: Given an o-polynomial, how can one find all other
o-polynomials o-equivalent to that o-polynomial? After this question has been settled,
we specialize this question to o-monomials, where we find exactly 5 transformations, so
six o-equivalent o-monomials all in all.

For this entire section we assume q to be a power of 2.

2.2.1 o-Equivalence
In this subsection we define o-equivalence and give a few examples of equivalent o-
polynomials and how to find them. For the notion of o-equivalence we follow [34]. The
examples build upon results taken from [5, Section 3.1].

2.2.1 Definition (o-Equivalence). Two o-polynomials f, g ∈ Fq[x] are o-equivalent if
their corresponding hyperovals H(f),H(g) are equivalent.

Given an o-polynomial f ∈ Fq[x], a natural method for finding an equivalent o-
polynomial g ∈ Fq[x] is taking a collineation ψ mapping H(f) to a hyperoval ψH(f)
containing the fundamental quadrangle and then recovering g from the points of ψH(f).
The important idea here is that we do not have check the assumptions of Theorem 2.1.15
because we already know that the polynomial describing ψH(f) is an o-polynomial.

2.2.2 Example (Permutation of the Coordinates). Let f ∈ Fq[x] be an o-polynomial
and let f−1 denote the compositional inverse of f . Consider the map ψ : PG(2, q) →
PG(2, q), (a, b, c) 7→ (a, c, b). This map is a projectivity given by the matrix

M =

1 0 0
0 0 1
0 1 0



13



2 o-Polynomials

stabilizing the fundamental quadrangle. To find the o-polynomial g o-equivalent to f
we calculate

ψH(f) = ψ{(1, s, f(s)) : s ∈ Fq} ∪ ψ{(0, 1, 0), (0, 0, 1)}
= {(1, f(s), s) : s ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)}
= {(1, ŝ, f−1(ŝ)) : ŝ ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)}
= H(f−1),

where we have substituted ŝ = f(s). Thus we conclude g = f−1 and that the composi-
tional inverse map inv : f 7→ f−1 maps o-polynomials to o-equivalent o-polynomials.

2.2.3 Example (Permutations of the Coordinates II). Let f ∈ Fq[x] be an o-polynomial
and let f̄ denote the reciprocal polynomial f̄(x) = xf(xq−2). Consider the map ψ :
PG(2, q) → PG(2, q), (a, b, c) 7→ (b, a, c). This map is a projectivity given by the matrix

M =

0 1 0
1 0 0
0 0 1


stabilizing the fundamental quadrangle. We may calculate again

ψH(f) = ψ{(1, s, f(s)) : s ∈ Fq} ∪ ψ{(0, 1, 0), (0, 0, 1)}
= {(s, 1, f(s)) : s ∈ Fq} ∪ {(1, 0, 0), (0, 0, 1)}
= {(1, sq−2, sq−2f(s)) : s ∈ F∗

q} ∪ {(0, 1, 0), (1, 0, 0), (0, 0, 1)}
= {(1, ŝ, ŝf(ŝq−2)) : s ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)}
= H(f̄),

where in the third step we swapped out the point (0, 1, 0) and scaled the coordinates
by sq−2 to yield a 1 as the first coordinate. In the fourth step we substituted ŝ = sq−2

and swapped the point (1, 0, 0) back in. So in conclusion, the map ϕ : f 7→ f̄ maps
o-polynomials to o-equivalent o-polynomials.

Note that the permutations from the two preceding Examples 2.2.2 and 2.2.3 generate
the group of permutations S3, so that we might define a group action of S3 on the set
of o-polynomials. The orbits of the action would then be the equivalence classes. This
has been done first by Cherowitzo in [9], where he has also started the investigation of
this topic.

A natural question would be, whether the transformations induced by the permuta-
tions of the coordinates are all possible transformations of o-polynomials. The answer
in general is no, but for o-monomials it is yes. The next two subsections are devoted to
finding all transformations.

To close this section, we count how many polynomials are o-equivalent to a given
o-polynomial f ∈ Fq[x], given originally in [34]. Recall that we identify polynomials
with their maps.
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2.2 Equivalence of o-Polynomials

2.2.4 Theorem. Let q = 2n and f ∈ Fq[x] be an o-polynomial and let G denote the
stabilizer of H(f) under PΓL(3, q). Then there are

n(q + 2)(q + 1)q(q − 1)
|G|

different o-polynomials o-equivalent to f .

Proof. By Theorem 2.1.15 we need to count the number of different hyperovals con-
taining the fundamental quadrangle equivalent to H(f) under PΓL(3, q). Let S(Q) be
the set of hyperovals that are equivalent to H(f) and that contain a fixed frame Q of
PG(2, q). Further, let N(Q) = |S(Q)| denote the number of such hyperovals. Note that
N(Q) does not actually depend on Q, because a collineation taking Q to a different
frame Q′ maps the set S(Q) bijectively to S(Q′), so N(Q) = N(Q′). Our goal is now
to determine N := N(Q).

So, let A denote the number of pairs (H′, Q), where H′ is a hyperoval equivalent to
H(f) and Q is a frame contained in H′. On the one hand, we can determine A by first
choosing a frame Q. For the first point P1 we have q2 + q + 1 possibilities and for the
second point P2 we have q2 + q remaining points to choose from. The third point must
not lie on the line P1 ∨P2, so there are q2 remaining possible choices. For the last point
we need to exclude the lines P1 ∨ P2, P1 ∨ P3 and P2 ∨ P3. Since each of the points P1,
P2 and P3 is excluded twice, there are

q2 + q + 1 − 3q − 3 + 3 = q2 − 2q + 1 = (q − 1)2

remaining choices for P4. Because the order of the points is irrelevant, we obtain

A = (q2 + q + 1) (q2 + q) q2(q − 1)2

4! N. (2.4)

On the other hand, we can count the number of hyperovals H′ equivalent to H(f)
and then choose a frame in H′. The set of all hyperovals equivalent to H(f) is

{φH(f) : φ ∈ PΓL(3, q)} .

To obtain its size, we need to factor out all the collineations stabilizing H(f). We have

|PΓL(3, q)| = n
(
q2 + q + 1

) (
q2 + q

)
q2(q − 1)2

by choosing an automorphism γ of Fq and then choosing the values on a frame of
PG(2, q) (which themselves make up a frame). All in all, we obtain

A = [PΓL(3, q) : G]
(
q + 2

4

)
= n (q2 + q + 1) (q2 + q) q2(q − 1)2

|G|

(
q + 2

4

)
. (2.5)
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2 o-Polynomials

Combining Equations (2.4) and (2.5) now yields

N = n(q + 2)(q + 1)q(q − 1)
|G|

.

2.2.2 Ovals and the Magic Action
In order to obtain strong results, we restrict our attention in this subsection to ovals
induced by o-permutations. We follow mainly [35]. For o-permutations, we drop the
condition that f(1) = 1. Equivalently, we drop the assumption that the resulting
hyperoval contains the point (1, 1, 1).

2.2.5 Definition (o-Permutation). Let f ∈ Fq[x]. Then f is called an o-permutation
if

(i) f is a permutation polynomial with f(0) = 0,

(ii) the polynomial ga(x) = (f(x+ a) + f(a))xq−2 is a permutation polynomial for all
a ∈ Fq.

2.2.6 Definition (Oval Induced by o-Permutation). Let f ∈ Fq[x] be an o-permutation.
The corresponding oval is defined as

O(f) = {(1, s, f(s)) : s ∈ Fq} ∪ {(0, 1, 0)}.

2.2.7 Definition (os-Equivalence). Two o-permutations f, g ∈ Fq[x] are os-equivalent
if their corresponding ovals O(f) and O(g) are equivalent.

Note that an o-permutation f may also induce a hyperoval

H(f) = {(1, s, f(s)) : s ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)},

which does not contain the point (1, 1, 1) because condition (ii) together with f being
a permutation polynomial guarantees that no three points are collinear (cf. Theorem
2.1.15). Then dropping the point (0, 0, 1) gives rise to an oval with nucleus (0, 0, 1).
The advantage of o-permutations is the added flexibility of having scalar multiples.

Next, we show that the nucleus has a special role when considering os-equivalent
o-permutations. This forces helpful restrictions on the collineations one has to consider
when investigating os-equivalent o-permutations.

2.2.8 Lemma. Let f, g ∈ Fq[x] be os-equivalent o-permutations. If ψ : PG(2, q) →
PG(2, q) is a collineation mapping O(f) to O(g), then ψ((0, 0, 1)) = (0, 0, 1).

Proof. Consider the tangents l1, . . . , lq+1 of O(f). They are concurrent and meet in
the nucleus of O(f), which is (0, 0, 1). The lines ψl1, . . . , ψlq+1 are the tangents of
ψO(f) = O(g) because ψ preserves incidence. The tangents of O(g) also meet in the
nucleus (0, 0, 1) of O(g), so ψ must take (0, 0, 1) to (0, 0, 1).

2.2.9 Corollary. Let f, g ∈ Fq[x] be os-equivalent o-polynomials. Then they are o-
equivalent.
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Proof. Let φ ∈ PΓL(3, q) denote a collineation taking O(f) to O(g). Because we have
φ(0, 0, 1) = (0, 0, 1), we can extend φO(f) = O(g) to φH(f) = H(g), so f and g are
o-equivalent.

Now we introduce our primary tool for the os-equivalence of o-permutations, the
magic action by O’Keefe and Penttila [35]. It is a group action of the group of the
collineations of the projective line on the set of o-permutations. We need some notations
and definitions first.

2.2.10 Notation. Let γ be an automorphism of Fq. We write γ(x) =: xγ for x ∈ Fq.
Furthermore, we write x

1
γ := γ−1(x) for x ∈ Fq. For a vector x ∈ Fk

q (with k = 2, 3)
by xγ we mean γ applied component-wise and for projective points ⟨x⟩γ is meant to be
understood as ⟨xγ⟩. Further, for a polynomial f(x) = ∑q−1

i=0 aix
i we define

fγ(x) :=
(
f
(
x

1
γ

))γ
=

q−1∑
i=0

aγ
i x

i.

Given a matrix A = (aij)i,j=1,...,k we write Aγ for the matrix (aγ
ij)i,j=1,...,k.

2.2.11 Definition. Let

ΓL(2, q) := {ψ : F2
q → F2

q, x 7→ Axγ : A ∈ GL(2, q), γ ∈ Aut(Fq)}

be the group of semilinear maps of F2
q and let

PΓL(2, q) = {ψ : PG(2, q) → PG(2, q), x 7→ Axγ : A ∈ GL(2, q), γ ∈ Aut(Fq)}

be the group of collineations of the projective line over Fq. Further, we define

F := {f : Fq → Fq | f(0) = 0}.

2.2.12 Theorem (Magic Action on F). The group PΓL(2, q) acts on F through ψf :
Fq → Fq defined by

x 7→ |A|−
1
2

(
(bx+ d)fγ

(
ax+ c

bx+ d

)
+ bxfγ

(
a

b

)
+ dfγ

(
c

d

))
, (2.6)

where ψ = x 7→ Axγ with γ ∈ Aut(Fq) and A = ( a b
c d ). This action is called the magic

action. The denominators, say t, are meant to be read as multiplying by tq−2. So, if a
denominator is zero, then the corresponding term is zero as well.

Proof. We begin by showing that the group ΓL(2, q) acts on F via Formula (2.6) and
then that the group PΓL(2, q) inherits this action.

So let ψ ∈ ΓL(2, q) with automorphism γ and matrix A =
(
a b
c d

)
and let f ∈ F .

Then we have

(ψf)(0) = |A|−
1
2

(
dfγ

(
c

d

)
+ dfγ

(
c

d

))
= 0,
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2 o-Polynomials

so ψf ∈ F . Let id ∈ ΓL(2, q), that is, x 7→
(

1 0
0 1

)
x. Then we have

(idf)(x) = 1
[
(0x+ 1)f

(1x+ 0
0x+ 1

)
+ 0xf

(1
0

)
+ 1f

(0
1

)]
= f(x),

thus idf = f .

Let ψ1, ψ2 ∈ ΓL(2, q) with ψ1 : x 7→ A1x
γ1 , ψ2 : x 7→ A2x

γ2 , and

A1 =
(
a1 b1
c1 d1

)
, A2 =

(
a2 b2
c2 d2

)
.

We have ψ2ψ1(x) = ψ2 (A1x
γ1) = A2 (A1x

γ1)γ2 = A2A
γ2
1 x

γ1γ2 and

A2A
γ2
1 =

(
aγ2

1 a2 + cγ2
1 b2 bγ2

1 a2 + dγ2
1 b2

aγ2
1 c2 + cγ2

1 d2 bγ2
1 c2 + dγ2

1 d2

)
.

All in all, we obtain

((ψ2ψ1)f) (x) = |A2A
γ2
1 |−

1
2


((bγ2

1 a2 + dγ2
1 b2)x+ bγ2

1 c2 + dγ2
1 d2) fγ1γ2

(
(aγ2

1 a2 + cγ2
1 b2)x+ aγ2

1 c2 + cγ2
1 d2

(bγ2
1 a2 + dγ2

1 b2)x+ bγ2
1 c2 + dγ2

1 d2

)

+ (bγ2
1 a2 + dγ2

1 b2)xfγ1γ2

(
aγ2

1 a2 + cγ2
1 b2

bγ2
1 a2 + dγ2

1 b2

)
+ (bγ2

1 c2 + dγ2
1 d2) fγ1γ2

(
aγ2

1 c2 + cγ2
1 d2

bγ2
1 c2 + dγ2

1 d2

).
(2.7)

Next, we calculate (ψ2 (ψ1f)) (x). For the sake of readability we write g(x) :=
(ψ1f) (x), that is,

g(x) = |A1|−
1
2

(
(b1x+ d1)fγ1

(
a1x+ c1

b1x+ d1

)
b1xf

γ1

(
a1

b1

)
+ d1f

γ1

(
c1

d1

))
.

We need an expression for gγ2(x). So we calculate

gγ2(x) =
(
g
(
x

1
γ2

))γ2

=
(
|A1|−

1
2
)γ2︸ ︷︷ ︸

=:h1

 (bγ2
1 x+ dγ2

1 )
fγ1

a1x
1

γ2 + c1

b1x
1

γ2 + d1

γ2

︸ ︷︷ ︸
=:h2

+ bγ2
1 x
(
fγ1

(
a1

b1

))γ2

︸ ︷︷ ︸
=:h3

+ dγ2
1

(
fγ1

(
c1

d1

))γ2

︸ ︷︷ ︸
=:h4

.
(2.8)
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We now manipulate the terms individually.

h1 =
(
(a1d1 + b1c1)− 1

2
)γ2

=
(
(a1d1 + b1c1)2n−1−2n−1)γ2

= (aγ2
1 d

γ2
1 + bγ2

1 c
γ2
1 )2n−1−2n−1

= |Aγ2
1 |−

1
2 .

The other three terms may be handled very similarly.

h2 =
fγ1

a1x
1

γ2 + c1

b1x
1

γ2 + d1

γ2

=
fγ1

(aγ2
1 x+ cγ2

1
bγ2

1 x+ dγ2
1

) 1
γ2

γ2

= fγ1γ2

(
aγ2

1 x+ cγ2
1

bγ2
1 x+ dγ2

1

)
,

h3 =
(
fγ1

(
a1

b1

))γ2

=
fγ1

(aγ2
1
bγ2

1

) 1
γ2

γ2

= fγ1γ2

(
aγ2

1
bγ2

1

)
,

h4 =
(
fγ1

(
c1

d1

))γ2

=
fγ1

( cγ2
1
dγ2

1

) 1
γ2

γ2

= fγ1γ2

(
cγ2

1
dγ2

1

)
.

Plugging these expressions into (2.8), we obtain

gγ2(x) = |Aγ2
1 |−

1
2

[
(bγ2

1 x+ dγ2
1 ) fγ1γ2

(
aγ2

1 x+ cγ2
1

bγ2
1 x+ dγ2

1

)

+bγ2
1 xf

γ1γ2

(
aγ2

1
bγ2

1

)
+ d1

γ2fγ1γ2

(
cγ2

1
dγ2

1

)]
.

(2.9)

Now we are able to consider (ψ2g)(x).

(ψ2g)(x) = |A2|−
1
2

(b2x+ d2)gγ2

(
a2x+ c2

b2x+ d2

)
︸ ︷︷ ︸

=:T1

+ b2xg
γ2

(
a2

b2

)
︸ ︷︷ ︸

=:T2

+ d2g
γ2

(
c2

d2

)
︸ ︷︷ ︸

=:T3

. (2.10)

Applying Formula (2.9) directly results in very long expressions, so we consider the
terms T1, T2, T3 one by one. We proceed in an ascending order with respect to the effort
involved, underlining terms colorfully that cancel in the sum.

T3 = d2 |Aγ2
1 |−

1
2

(bγ2
1
c2

d2
+ dγ2

1

)
fγ1γ2

(
aγ2

1
c2
d2

+ cγ2
1

bγ2
1

c2
d2

+ dγ2
1

)

+ bγ2
1
c2

d2
fγ1γ2

(
aγ2

1
bγ2

1

)
+ dγ2

1 f
γ1γ2

(
cγ2

1
dγ2

1

)
= |Aγ2

1 |−
1
2

 (bγ2
1 c2 + dγ2

1 d2) fγ1γ2

(
aγ2

1 c2 + cγ2
1 d2

bγ2
1 c2 + dγ2

1 d2

)

+ bγ2
1 c2f

γ1γ2

(
aγ2

1
bγ2

1

)
+ dγ2

1 d2f
γ1γ2

(
cγ2

1
dγ2

1

).
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Next, we handle T2.

T3 = b2x |Aγ2
1 |−

1
2

(bγ2
1
a2

b2
+ dγ2

1

)
fγ1γ2

(
aγ2

1
a2
b2

+ cγ2
1

bγ2
1

a2
b2

+ dγ2
1

)

+ bγ2
1
a2

b2
fγ1γ2

(
aγ2

1
bγ2

1

)
+ dγ2

1 f
γ1γ2

(
cγ2

1
dγ2

1

)
= |Aγ2

1 |−
1
2

 (bγ2
1 a2 + dγ2

1 b2)xfγ1γ2

(
aγ2

1 a2 + cγ2
1 b2

bγ2
1 a2 + dγ2

1 b2

)

+ bγ2
1 a2xf

γ1γ2

(
aγ2

1
bγ2

1

)
+ dγ2

1 b2xf
γ1γ2

(
cγ2

1
dγ2

1

).
And lastly, we handle T1.

T1 = (b2x+ d2) |Aγ2
1 |−

1
2

(bγ2
1
a2x+ c2

b2x+ d2
+ dγ2

1

)
fγ1γ2

(
aγ2

1
a2x+c2
b2x+d2

+ cγ2
1

bγ2
1

a2x+c2
b2x+d2

+ dγ2
1

)

+ bγ2
1
a2x+ c2

b2x+ d2
fγ1γ2

(
aγ2

1
bγ2

1

)
+ dγ2

1 f
γ1γ2

(
cγ2

1
dγ2

1

)
= |Aγ2

1 |−
1
2

(bγ2
1 (a2x+ c2) + dγ2

1 (b2x+ d2)) fγ1γ2

(
aγ2

1 (a2x+ c2) + cγ2
1 (b2x+ d2)

bγ2
1 (a2x+ c2) + dγ2

1 (b2x+ d2)

)

+ bγ2
1 (a2x+ c2)fγ1γ2

(
aγ2

1
bγ2

1

)
+ dγ2

1 (b2x+ d2)fγ1γ2

(
cγ2

1
dγ2

1

)
= |Aγ2

1 |−
1
2

((bγ2
1 a2 + dγ2

1 b2)x+ bγ2
1 c2 + dγ2

1 d2)fγ1γ2

(
(aγ2

1 a2 + cγ2
1 b2)x+ aγ2

1 c2 + cγ2
1 d2

(bγ2
1 a2 + dγ2

1 b2)x+ bγ2
1 c2 + dγ2

1 d2

)

+ bγ2
1 a2xf

γ1γ2

(
aγ2

1
bγ2

1

)
+ bγ2

1 c2f
γ1γ2

(
aγ2

1
bγ2

1

)
+ dγ2

1 b2xf
γ1γ2

(
cγ2

1
dγ2

1

)

+ dγ2
1 d2f

γ1γ2

(
cγ2

1
dγ2

1

).
Now, by combining the determinants we see that Equation (2.7) and Equation (2.10)
coincide. We have therefore proved that the group ΓL(2, q) acts on F via (2.6).

For the group PΓL(2, q) to inherit this action, we need to show that the action does
not depend on the chosen representation of elements of PΓL(2, q). The elements of
PΓL(2, q) are uniquely determined by an automorphism γ ∈ Aut(Fq) and a matrix
A ∈ GL(2, q), up to scalar multiples. We thus need to prove that the action is invariant
under taking scalar multiples of A. We may represent a scalar multiple of A as ( a 0

0 a )A
with a ∈ F∗

q. So far we have shown (ψ2ψ1)f = ψ2(ψ1f) for ψ1, ψ2 ∈ ΓL(2, q). So, let
ψ1 ∈ ΓL(2, q) be a representation of ψ ∈ PΓL(2, q) and let ψ2 : x 7→ ( a 0

0 a )x ∈ ΓL(2, q).
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2.2 Equivalence of o-Polynomials

Then we have

(ψ2f)(x) = a−1
(
af
(
ax

a

))
= f(x)

and thus (ψ2ψ1)f = ψ1f for all f ∈ F and the action is independent of the chosen
representation.

The first important property is the semilinearity of the magic action. The second
important property, one of the reasons the magic action is interesting to us, is that
the magic action maps o-permutations to os-equivalent o-permutations. Moreover, a
collineation mapping the oval O(f) to O(ψf), for an o-permutation f and a collineation
ψ ∈ PΓL(2, q), can be given explicitly.

After proving these facts, we will be able to give an example easily. Also note that
PΓL(2, q) acts on the sets of o-permutations and o-polynomials as well, since we identify
maps and polynomials.

2.2.13 Lemma. The magic action of PΓL(2, q) on F is semilinear, that is, for k ∈ Fq,
f, g ∈ F , and ψ : x 7→ Axγ ∈ PΓL(2, q) we have

ψ(kf) = kγψf,

ψ(f + g) = ψf + ψg.

Proof. Let k ∈ Fq, f, g ∈ F , and ψ : x 7→ Axγ ∈ PΓL(2, q). Firstly, we have

(kf)γ(x) =
(
(kf)

(
x

1
γ

))γ
=
(
k · f

(
x

1
γ

))γ
= kγfγ(x),

so

(ψ(kf))(x) = |A|−
1
2

(
(bx+ d)(kf)γ

(
ax+ c

bx+ d

)
+ bx(kf)γ

(
a

b

)
+ d(kf)γ

(
c

d

))
= kγ|A|−

1
2

(
(bx+ d)fγ

(
ax+ c

bx+ d

)
+ bxfγ

(
a

b

)
+ dfγ

(
c

d

))
= kγ(ψf)(x).

Furthermore, we have

(f + g)γ =
(
(f + g)

(
x

1
γ

))γ
=
(
f
(
x

1
γ

)
+ g

(
x

1
γ

))γ
= fγ(x) + gγ(x)

and thus

(ψ(g + f))(x) = |A|−
1
2

(
(bx+ d)(f + g)γ

(
ax+ c

bx+ d

)
+ bx(f + g)γ

(
a

b

)
+ d(f + g)γ

(
c

d

))
= |A|−

1
2

(
(bx+ d)fγ

(
ax+ c

bx+ d

)
+ bxfγ

(
a

b

)
+ dfγ

(
c

d

))
+ |A|−

1
2

(
(bx+ d)gγ

(
ax+ c

bx+ d

)
+ bxgγ

(
a

b

)
+ dgγ

(
c

d

))
= (ψf)(x) + (ψg)(x).
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2.2.14 Theorem. Let f ∈ Fq[x] be an o-permutation and let ψ : x 7→ Axγ ∈ PΓL(2, q),
where A = ( a b

c d ) ∈ GL(2, q) and γ ∈ Aut(Fq). Then ψf is an o-permutation os-
equivalent to f and φO(f) = O(ψf), where φ ∈ PΓL(3, q), φ : x 7→ ψfx

γ with

ψf =


a b 0
c d 0

a(ψf)
(

c
a

)
b(ψf)

(
d
b

)
|A| 1

2

 ∈ GL(3, q).

Proof. Our approach is as described in the remarks after Definition 2.2.1: We calculate
φO(f) explicitly and recover that ψf is an os-equivalent o-permutation. So let f , ψ,
and φ be given as in the statement.

First, we note

a(ψf)
(
c

a

)
= a|A|−

1
2

(b c
a

+ d
)
fγ

(
a c

a
+ c

b c
a

+ d

)
︸ ︷︷ ︸

=0

+ b
c

a
fγ
(
a

b

)
+ dfγ

(
c

d

)

= |A|−
1
2

(
bcfγ

(
a

b

)
+ adfγ

(
c

d

)) (2.11)

and

b(ψf)
(
d

b

)
= b|A|−

1
2

(bd
b

+ d

)
︸ ︷︷ ︸

=0

fγ

(
ad

b
+ c

bd
b

+ d

)
+ b

d

b
fγ
(
a

b

)
+ dfγ

(
c

d

)

= |A|−
1
2

(
bdfγ

(
a

b

)
+ bdfγ

(
c

d

))
.

(2.12)

We start by calculating

φO(f) =
{
ψf (1, sγ, (f(s))γ) : s ∈ Fq

}
∪ {ψf (0, 1, 0)}

=
{
ψf (1, s, fγ(s)) : s ∈ Fq

}
∪ {ψf (0, 1, 0)}

=
{(

a+ bs, c+ ds, a(ψf)
(
c

a

)
+ bs(ψf)

(
d

b

)
+ |A|

1
2fγ(s)

)
: s ∈ Fq

}

∪
{(

b, d, b(ψf)
(
d

b

))}

=

1, c+ ds

a+ bs
,
a(ψf)

(
c
a

)
+ bs(ψf)

(
d
b

)
+ |A| 1

2fγ(s)
a+ bs︸ ︷︷ ︸
=:y(s)

 : s ∈ Fq \
{
a

b

}
∪


(

0, c+ d
a

b
, a(ψf)

(
c

a

)
+ b

a

b
(ψf)

(
d

b

)
+ |A|

1
2fγ

(
a

b

)
︸ ︷︷ ︸

=:T

)
,

(
b, d, b(ψf)

(
d

b

)),

where in the second step we have replaced s by s
1
γ and in the fourth step we scaled
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2.2 Equivalence of o-Polynomials

each point by 1
a+bs

, after swapping the problematic point out.

We handle T first by applying Formulas (2.11) and (2.12). We need T = 0, so the
corresponding point is (0, 1, 0), the only allowed point from the line at infinity.

T = |A|−
1
2

(
bcfγ

(
a

b

)
+ adfγ

(
c

d

))
+ a|A|−

1
2

(
dfγ

(
a

b

)
+ dfγ

(
c

d

))
+ |A|

1
2fγ

(
a

b

)
= |A|

1
2fγ

(
a

b

)
+ |A|−

1
2

(
bcfγ

(
a

b

)
+ adfγ

(
a

b

)
+ adfγ

(
c

d

)
+ adfγ

(
c

d

))
= |A|

1
2fγ

(
a

b

)
+ |A|−

1
2fγ

(
a

b

)
(ad+ bc)︸ ︷︷ ︸

=|A|

= 0.

To handle y(s), we substitute t = c+ds
a+bs

for s ∈ Fq \
{

a
b

}
, or equivalently, s = at+c

bt+d
for

t ∈ Fq \
{

b
d

}
. We first look into the denominator of y(s), where we have substituted

s = at+c
bt+d

, by calculating

a+ bs = a+ b
at+ c

bt+ d
= abt+ ad+ abt+ bc

bt+ d
= |A|
bt+ d

.

Thus we obtain

y(s) =

=:S︷ ︸︸ ︷
(bt+ d)a(ψf)

(
c

a

)
+ (at+ c)b(ψf)

(
d

b

)
+ (bt+ d)|A| 1

2fγ
(

at+c
bt+d

)
|A|

.

Further applications of Formulas (2.11) and (2.12) give

S = (bt+ d)|A|−
1
2

(
bcfγ

(
a

b

)
+ adfγ

(
c

d

))
+ (at+ c)|A|−

1
2

(
bdfγ

(
a

b

)
+ bdfγ

(
c

d

))
= |A|−

1
2

(
b2ctfγ

(
a

b

)
+ bcdfγ

(
a

b

)
+ abdtfγ

(
c

d

)
+ ad2fγ

(
c

d

)
+ abdtfγ

(
a

b

)
+ bcdfγ

(
a

b

)
+ abdtfγ

(
c

d

)
+ bcdfγ

(
c

d

))
= |A|−

1
2

(
fγ
(
a

b

)
(b2ct+ abdt)︸ ︷︷ ︸

=bt|A|

+ fγ
(
c

d

)
(ad2 + bcd)︸ ︷︷ ︸

=d|A|

)

= |A|
1
2

(
btfγ

(
a

b

)
+ dfγ

(
c

d

))
.

So, all in all, we get

y(s) =
|A| 1

2
(
btfγ

(
a
b

)
+ dfγ

(
c
d

))
+ (bt+ d)|A| 1

2fγ
(

at+c
bt+d

)
|A|

= |A|−
1
2

(
(bt+ d)|A|

1
2fγ

(
at+ c

bt+ d

)
+ btfγ

(
a

b

)
+ dfγ

(
c

d

))
= (ψf)(t).
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The yet remaining point
(
b, d, b(ψf)

(
d
b

))
is, scaled by 1

b
, of the same form, so it follows

that

φO(f) = {(1, t, (ψf)(t)) : t ∈ Fq} ∪ {(0, 1, 0)} = O(ψf).

2.2.15 Example. Let f ∈ Fq[x] be an o-permutation and let f̄ denote the reciprocal

polynomial f̄(x) = xf(xq−2). Consider ϕ : x 7→
(

0 1
1 0

)
x ∈ PΓL(2, q). Then we have

(ϕf)(x) = 1
(

(1x+ 0)f
(0x+ 1

1x+ 0

)
+ 1xf

(0
1

)
+ 0f

(1
0

))
= xf(xq−2) = f̄(x),

so f̄ is an o-permutation os-equivalent to f by Theorem 2.2.14. Using its notation we
have

ϕ =

0 1 0
1 0 0
0 0 1

 ,
so O(ϕf) is an oval attainable from O(f) by swapping the first and second coordinates.

Note that this is just Example 2.2.3 for ovals written in the language of the magic ac-
tion. Importantly, Example 2.2.2 cannot be adapted in this context because the nucleus
(0, 0, 1) would be mapped to (0, 1, 0), but Lemma 2.2.8 prohibits that. Consequently,
the map inv taking permutations to their inverses is not an os-equivalence preserving
map.

Our next goal is to prove a converse statement to Theorem 2.2.14, namely that for
any two os-equivalent o-permutations there is an element ψ ∈ PΓL(2, q) mapping one
to the other, up to a scalar multiple. Equivalently, two os-equivalent o-permutations
are in the same orbit, up to a scalar multiple, under the action of PΓL(2, q).

The following lemma is the crucial observation that if the matrix of a projectivity
mapping ovals corresponding to two os-equivalent o-permutations onto each other looks
sufficiently enough like the matrix given in Theorem 2.2.14, the matrices coincide. Thus
the work necessary for the converse statement reduces to ensuring that the matrices
describing the projectivities are of the correct form. This is why everything is only up
to a scalar multiple, we need this additional degree of freedom for this task.

2.2.16 Lemma. Let f be an o-permutation of PG(2, q), a, b, c, d ∈ Fq with ad+ bc ̸= 0
and z, y ∈ Fq. Let

A =

a b 0
c d 0
z y (ad+ bc) 1

2



and ψ : x 7→
(
a b
c d

)
x ∈ PGL(2, q). Then AO(f) is an oval of the form O(g) for an

o-permutation g ∈ Fq[x] if and only if z = a(ψf)
(

a
c

)
and y = b(ψf)

(
d
b

)
.
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2.2 Equivalence of o-Polynomials

Proof. If z = a(ψf)
(

a
c

)
and y = b(ψf)

(
d
b

)
, then by Theorem 2.2.14 we have

ψf =


a b 0
c d 0

a(ψf)
(

c
a

)
b(ψf)

(
d
b

)
(ad+ bc) 1

2

 = A

and AO(f) = O(ψf) and thus g := ψf is an o-permutation.
Now assume we have an o-permutation g such that AO(f) = O(g). Let ψf be given

as in Theorem 2.2.14 and consider

v := ψ
−1
f

0
1
0

 and w := ψ
−1
f

1
0
0

 .
Then we have ⟨v⟩, ⟨w⟩ ∈ O(f) as well as

Av =

0
1
α

 and Aw =

1
0
β


for some α, β ∈ Fq because the first two rows of A and ψf coincide. Now, AO(f) may
only be an oval of the desired form O(g) if α = 0 and β = 0. Indeed, (0, 1, 0) is the
only point of the line at infinity of O(g) and (1, 0, 0) is the only point of O(g), where
the second coordinate is 0. So we obtain the linear system{

v1z + v2y = v3(ad+ bc) 1
2 ,

w1z + w2y = w3(ad+ bc) 1
2 .

One solution, z = a(ψf)
(

a
c

)
and y = b(ψf)

(
d
b

)
, is already known by Theorem 2.2.14,

so we only need to show the uniqueness of the solution. This, however, follows because
⟨v⟩ and ⟨w⟩ are different points of O(f). Indeed, if one of the points is (0, 1, 0), assume
⟨v⟩ = (0, 1, 0), then ⟨w⟩ = (1, t, f(t)) for some t ∈ Fq, so w1 ̸= 0 and

det
(

0 v2
w1 w2

)
̸= 0.

If both points are not (0, 1, 0), then v1, w1 ̸= 0. In this case we have

det
(
v1 v2
w1 w2

)
= 1
v1w1

det
(

1 v2
v1

1 w2
w1

)
̸= 0

because the second coordinate differs for two different points of O(f) if the first coor-
dinate is fixed as 1.

2.2.17 Theorem. Let f, g ∈ Fq[x] be os-equivalent o-permutations. Then there is an
element k ∈ F∗

q and a collineation ψ ∈ PΓL(2, q) with ψf = k · g.
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Proof. First of all, O(g) and O(kg) are equivalent by the projectivity

x 7→

1 0 0
0 1 0
0 0 k

x,
so f and kg are os-equivalent as well. Now, let η ∈ PΓL(3, q), η : x 7→ Axγ be a
collineation mapping O(f) to O(kg). Then AO(fγ) = O(kg) because

ηO(f) = A {(1, sγ, (f(s))γ) : s ∈ Fq} ∪ A {(0, 1γ, 0)}
= A{(1, s, fγ(s)) : s ∈ Fq} ∪ A{(0, 1, 0)} = AO(fγ).

So if we have ψ2 ∈ PGL(2, q), ψ2 : x 7→ Ax with ψ2fγ O(fγ) = O(kg), then ψ : x 7→ Axγ

fulfills

O(ψf) = O(ψ2f
γ) = ψ2fγ O(fγ) = O(kg).

Thus it suffices assume that O(f) and O(kg) are equivalent via a projectivity φ with
associated matrix A.

We can also rewrite our problem to O(kf) and O(g) being equivalent via a projectivity
φ: If we have an element ψ ∈ PGL(2, q) with O(ψ(kf)) = O(g), by Lemma 2.2.13 we
also have

O(ψ(kf)) = O(kψf) =

1 0 0
0 1 0
0 0 k

O(ψf) = O(g),

so

O(ψf) =

1 0 0
0 1 0
0 0 1

k

O(g) = O
(1
k
g
)
.

The plan is to find the matrix A and choose a value for k such that Lemma 2.2.16 is
applicable. Since a projectivity is determined by its images on a frame of PG(2, q), we
select a particularly easy frame and consider its image under φ. Let ui, vi, si ∈ Fq for
i = 1, 2, 3 such that

O(kf) φ∼ O(g)
B1 := (1, 0, 0) 7→ (u1, u2, u3) =: C1,
B2 := (0, 1, 0) 7→ (v1, v2, v3) =: C2,
B3 := (0, 0, 1) 7→ (0, 0, 1) =: C3,
B4 := (1, 1, 1) 7→ (s1, s2, s3) =: C4.
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We may select the representatives

b1 =

1
0
0

, b2 =

0
1
0

, b3 =

 0
0

kf(t)

, b4 =

 1
1

kf(t)

,

c1 = a

u1
u2
u3

, c2 = b

v1
v2
v3

, c3 = c

0
0
1

, c4 =

s1
s2
s3


with a, b, c ∈ F∗

q such that c1 + c2 + c3 = c4 holds. This guarantees φB4 = C4 as well.
These constants exist, as C1, C2, C3, and C4 also constitute a frame, since they are four
points of the oval O(g). Then we find that the matrix

A :=

a u1 b v1 0
a u2 b v2 0
a u3 b v3

c
k·f(t)


induces the projectivity φ. In particular, we have A ∈ GL(3, q). Set

D :=
(
a u1 b v1
a u2 b v2

)
.

Note that 0 ̸= |A| = c
k·f(t) |D| and thus |D| ≠ 0, since c ̸= 0. Now choose

k = c

|D| 1
2f(t)

and ψ : x 7→ Dx ∈ PGL(2, q).

Then the matrices A and ψkf from Theorem 2.2.14 coincide by Lemma 2.2.16, so we
have

O(g) = AO(kf) = ψkfO(kf) = O(ψ(kf))

and thus g = ψ(kf).

Note that in [35] the crucial argument involving Lemma 2.2.16 is employed only
implicitly and is not given directly.

2.2.3 Application to Hyperovals
The goal of this subsection is to lift the results about the magic action to o-polynomials
and to obtain a set of transformations explaining the equivalence classes of o-equivalence
for o-polynomials in general and for o-monomials in particular.

We start by giving a set of generators of PΓL(2, q) taken from [35], utilizing a subset
of the elementary matrices. These generators correspond to a set of transformations of
o-permutations, which can be seen as building blocks for all possible transformations
of o-permutations, up to a scalar multiple.
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2 o-Polynomials

The following lemma holds for arbitrary characteristic, so we state it for the general
case, although we only need it for characteristic two.

2.2.18 Lemma (Generators of PΓL(2, q)). The following elements of PΓL(2, q) gener-
ate PΓL(2, q):

• σa : x 7→
(
a 0
0 1

)
x, where a ∈ F∗

q,

• τc : x 7→
(

1 0
c 1

)
x, where c ∈ Fq,

• ϕ : x 7→
(

0 1
1 0

)
x, and

• ργ : x 7→ xγ, where γ ∈ Aut(Fq).

In fact, for ψ ∈ PΓL(2, q), ψ : x 7→ Axγ with A =
(
a b
c d

)
, we have

ψ =


σaτcσ 1

d
ργ : b = 0,

σbτdσ 1
c
ϕργ : a = 0,

σbτdϕτ−a
|A|
σ−|A|

b

ργ : a, b ̸= 0.

Proof. Let x ∈ PG(2, q). We consider the case b = 0 first. Because |A| = ad − bc ̸= 0,
we have d ̸= 0. Then

σaτcσ 1
d
ργx = σaτcσ 1

d
xγ =

(
a 0
0 1

)(
1 0
c 1

)(
1
d

0
0 1

)
xγ

=
(
a 0
c 1

)(
1
d

0
0 1

)
xγ =

(
a
d

0
c
d

1

)
xγ =

(
a 0
c d

)
xγ = ψx.

The case a = 0 can be dealt with using the first case, as we have(
0 b
c d

)
ργx =

(
b 0
d c

)(
0 1
1 0

)
xγ =

(
b 0
d c

)
ϕxγ = σbτdσ 1

c
ϕxγ.
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2.2 Equivalence of o-Polynomials

If a, b ̸= 0, then

σbτdϕτ−a
|A|
σ−|A|

b

ργx =
(
b 0
0 1

)(
1 0
d 1

)(
0 1
1 0

)(
1 0

−a
|A| 1

)(−|A|
b

0
0 1

)
xγ

=
(
b 0
0 1

)(
1 0
d 1

)(
0 1
1 0

)(−|A|
b

0
a
b

1

)
xγ

=
(
b 0
0 1

)(
1 0
d 1

)(
a
b

1
−|A|

b
0

)
xγ =

(
b 0
0 1

)(
a
b

1
−|A|

b
+ ad

b
d

)
xγ

=
(

a b
−ad+bc+ad

b
d

)
xγ = ψx.

2.2.19 Corollary. The following transformations on the set of o-permutations induced
by the maps in Lemma 2.2.18 map o-permutations to os-equivalent o-permutations.
Furthermore, up to a scalar, any two os-equivalent o-permutations arise from each
other using the following transformations. For an o-permutation f ∈ Fq[x], define

• (σaf)(x) = a− 1
2f(ax), where a ∈ F∗

q,

• (τcf)(x) = f(x+ c) + f(c), where c ∈ Fq,

• (ϕf)(x) = xf( 1
x
), and

• (ργf)(x) = fγ(x), where γ ∈ Aut(Fq).

Proof. The elements σa, τc, ϕ, and ργ ∈ PΓL(2, q) with a ∈ F∗
q, c ∈ Fq, and γ ∈ Aut(Fq)

act on F as described in Theorem 2.2.12 and map o-permutations to os-equivalent o-
permutations, by Theorem 2.2.14. Moreover, given two os-equivalent o-permutations
f, g ∈ Fq[x], Theorem 2.2.17 guarantees the existence of a scalar factor k ∈ Fq and an
element ψ ∈ PΓL(2, q) with ψf = kg. Now Lemma 2.2.18 gives a representation of ψ
as a product of the elements σa, τc, ϕ, and ργ. Thus g arises, up to a scalar factor, from
the transformations induced by σa, τc, ϕ, and ργ. Finally, we calculate

(σaf)(x) = a− 1
2

(
(0x+ 1) f

(
ax+ 1
0x+ 1

)
+ 0xf

(1
0

)
+ 1f

(0
1

))
= a− 1

2f(ax),

(τcf)(x) = 1
(

(0x+ 1) f
(1x+ c

0x+ 1

)
+ 0xf

(1
0

)
+ 1f

(
c

1

))
= f(x+ c) + f(c),

(ϕf)(x) = 1
(

(1x+ 0) f
(0x+ 1

1x+ 0

)
+ 1xf

(0
x

)
+ 0f

(1
0

))
= xf

(1
x

)
,

(ργf)(x) =
(

(0x+ 1) fγ
(1x+ 0

0x+ 1

)
+ 0xfγ

(1
0

)
+ 1fγ

(0
1

))
= fγ(x).

Geometrically speaking, the different decompositions described in Lemma 2.2.18
translate to where the points (1, 0, 0) and (0, 1, 0) are mapped under the collineation
given in Theorem 2.2.14: Either to an affine point (1, s, f(s)) or to (0, 1, 0).

Our next goal is to lift these results to hyperovals and to the o-equivalence relation for
o-polynomials. For that purpose we need to ensure that the transformations preserve
the property of o-polynomials that f(1) = 1. Our argumentation follows [15, Chapter 5].
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2.2.20 Definition (Modified Magic Action). For a ∈ F∗
q, c ∈ Fq, and an o-polynomial

f ∈ Fq[x] define the transformations

(σ̃af)(x) = a
1
2

f(a)(σaf)(x) = 1
f(a)f(ax),

(τ̃cf)(x) = 1
f(1 + c) + f(c)(τcf)(x) = f(x+ c) + f(c)

f(1 + c) + f(c) .

2.2.21 Theorem. Two o-polynomials f, g ∈ Fq[x] are o-equivalent if and only if they
arise from each other using the transformations σ̃a, τ̃c, ϕ, ργ, inv with a ∈ F∗

q, c ∈ Fq,
and γ ∈ Aut(Fq).

Proof. Firstly, let f be an o-polynomial. By Theorem 2.2.14 σaf , τcf , ϕf , and ργf are
o-permutations os-equivalent to f . Then σ̃af and τ̃cf are o-permutations os-equivalent
to f because they are scalar multiples of σaf and τcf . So σ̃af , τ̃cf , ϕf , and ργf are
o-polynomials because they all evaluate to 1 at 1. Furthermore, they are os-equivalent
to f , so by Corollary 2.2.9 they are o-equivalent to f . Finally, Example 2.2.2 shows
that invf is an o-polynomial o-equivalent to f .

Now assume f and g are o-equivalent o-polynomials and let φ ∈ PΓL(3, q) denote a
collination with φH(f) = H(g). We proceed by distinguishing between the values of
φ−1((0, 0, 1)).

Case 1: Assume φ−1((0, 0, 1)) = (0, 0, 1). Then we have φO(f) = O(g), so f and g
are os-equivalent o-permutations. Thus Corollary 2.2.19 and Lemma 2.2.18 yield the
existence of k ∈ Fq, γ ∈ Aut(Fq), and

α1, . . . , α5 ∈ {id, σa, τc, ϕ : a ∈ F∗
q, c ∈ Fq}

with

α5 . . . α1ργf = kg.

To replace αi with its modified version α̃i, if necessary, we just multiply by an appro-
priate factor. Now, ϕ and id need no modification, that is, ϕ̃ = ϕ and ĩd = id. Because
the magic action is semilinear (Lemma 2.2.13), we may swap the new factors all the
way to the left and obtain a single constant factor, which we denote by b ∈ F∗

q. All in
all, we have

kg = α5 . . . α1ργf = bα̃5 . . . α̃1ργf.

Because g and α̃5 . . . α̃1ργf are o-polynomials, k = b follows by evaluating at 1. Thus g
arises from f through the transformations σ̃a, τ̃c, ϕ, and ργ, where a ∈ F∗

q and c ∈ Fq.
Case 2: Assume φ−1((0, 0, 1)) = (0, 1, 0). We reduce this case to the first case utilizing

inv. As described in Example 2.2.2, one collineation mapping H(f) to H(invf) swaps
the second and the third coordinate. Because inv invf = f , we have
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H(invf) H(f) H(g)
(0, 0, 1) 7→ (0, 1, 0) 7→ (0, 0, 1).

Thus the first case yields that g arises from f using the transformations σ̃a, τ̃c, ϕ,
inv, and ργ, where a ∈ F∗

q, c ∈ Fq and γ ∈ Aut(Fq).
Case 3: Assume φ−1((0, 0, 1)) = (1, t, f(t)), where t ∈ Fq. We reduce this case to the

second case along the following scheme.

O(ϕτ̃tf) = O
(

1
f(1+t)+f(t)ϕτtf

)
φ1→ O(ϕτtf) φ2→ O(τtf) φ3→ O(f)

(0, 1, 0) 7→ (0, 1, 0) 7→ (1, 0, 0) 7→ (1, t, f(t))

Note that 1
f(1+t)+f(t)ϕτtf = ϕτ̃tf , as the magic action is semilinear. For φ1 we may use

the projectivity induced by the matrix1 0 0
0 1 0
0 0 f(1 + t) + f(t)

 .
For φ2 and φ3 we may use, as indicated in Theorem 2.2.14, the projectivities induced
by the matrices 0 1 0

1 0 0
0 0 1

 and

 1 0 0
t 1 0

f(t) 0 1

 .
All in all, we have the following situation.

H(ϕτ̃cf) H(f) H(g)
(0, 1, 0) 7→ (1, t, f(t)) 7→ (0, 0, 1),

so the second case applies and g arises from f using the transformations σ̃a, τ̃c, ϕ, inv,
and ργ, where a ∈ F∗

q, c ∈ Fq, and γ ∈ Aut(Fq).

Note that the reduction in the third case differs from what is described in [15], as
their reduction does not define a collineation.

Our next goal, and highlight of this section, is to consider when o-monomials are o-
equivalent. We need Lucas’ Theorem about congruences of binomial coefficients, with
an adapted proof taken from [20].

2.2.22 Lemma (Lucas’ Theorem). Let q = 2n and 0 ≤ b ≤ a < q. Then
(

a
b

)
≡ 1

mod 2 if and only if a covers b.

Proof. Write a = ∑
i∈Ia

2i and b = ∑
i∈Ib

2i with Ia, Ib ⊆ {0, . . . , n− 1}. Then we have

a∑
t=0

(
a

t

)
xt = (1 + x)a = (1 + x)

∑
i∈Ia

2i

=
∏
i∈Ia

(
1 + x2i

)
=
∑

I⊆Ia

∏
i∈I

x2i =
∑

I⊆Ia

x
∑

i∈I
2i
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2 o-Polynomials

in Fq, so
(

a
b

)
≡ 1 mod 2 if and only if Ib ⊆ Ia.

The next lemma yields some information about how some transformations take effect
on o-monomials. The lemma afterwards shows that some naturally appearing terms
never vanish. This is a special case of the more general 2-to-1 characterization explored
in Section 4.1.1.

2.2.23 Lemma. Let f(x) = ∑ q−2
2

i=1 a2ix
2i be an o-polynomial. Then the transformations

σa, τc, and ργ leave the degree of f invariant for a ∈ F∗
q, c ∈ Fq, and γ ∈ Aut(Fq).

Proof. Let d denote the degree of f . We calculate in ascending difficulty:

(ργf)(x) =
d
2∑

i=1
aγ

2ix
2i,

(σaf)(x) = a− 1
2

d
2∑

i=1
a2i(ax)2i =

d
2∑

i=1
a2ia

2i− 1
2x2i,

(τcf)(x) =
d
2∑

i=1
a2i(x+ c)2i +

d
2∑

i=1
a2ic

2i = ad(x+ c)d +
d−2

2∑
i=1

a2i(x+ c)2i +
d
2∑

i=1
a2ic

2i

= adx
d +

d−1∑
k=0

(
d

k

)
cd−kxl +

d−2
2∑

i=1
a2i(x+ c)2i +

d
2∑

i=1
a2ic

2i.

2.2.24 Lemma. Let f(x) = xe be an o-monomial and t ∈ Fq \ {0, 1}. Then te + t ̸= 0.

Proof. If te + t were equal to zero, we would either have t = 0 or te−1 = 1. Because e
is an o-exponent, e− 1 also defines a permutation on Fq, so te−1 = 1 implies t = 1.

2.2.25 Theorem (o-Equivalence for o-Monomials). Let f(x) = xe and g(x) = xj be
o-monomials. Then f and g are o-equivalent if and only if

j ∈ Be :=
{
e,

1
e
, 1 − e,

1
1 − e

,
e

e− 1 ,
e− 1
e

}
, (2.13)

where the elements of Be are meant to be taken modulo q − 1.

Proof. For an o-monomial f(x) = xe we have the o-equivalent o-monomials (invf)(x) =
x

1
e , (ϕf)(x) = x1−e, (inv ϕf)(x) = x

1
1−e , (ϕ invf)(x) = x1− 1

e = x
e−1

e and (inv ϕ invf)(x) =
x

e
e−1 . Thus Be has to contain the elements e, 1

e
, 1 − e, 1

1−e
, e

e−1 ,
e−1

e
.

Now the transformations inv and ϕ (and in particular their effect on o-polynomials)
can be described using the projectivities given in the Examples 2.2.2 and 2.2.3. Since
these projectivities correspond to permutations of the coordinates, there are only those
six o-monomials attainable using inv and ϕ.

To show that the six elements of Be are indeed the only o-exponents inducing o-
monomials o-equivalent to f , we mimic the proof of Theorem 2.2.21. So, let g(x) = xj
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2.2 Equivalence of o-Polynomials

be an o-monomial o-equivalent to f and let φ ∈ PΓL(3, q) denote a collineation mapping
H(f) to H(g). Because

(ργf)(x) = xe = f(x)

for any automorphism γ ∈ Aut(Fq), we may assume φ ∈ PGL(3, q). Now we distinguish
again between the possible preimages of (0, 0, 1) under φ.

Case 1 : Assume φ−1((0, 0, 1)) = (0, 0, 1). Then φO(f) = O(g), so f and g are os-
equivalent o-permutations. So by Theorem 2.2.17 we obtain k ∈ F∗

q and ψ ∈ PΓL(2, q)
with ψf = kg. Because φ ∈ PGL(3, q), we may assume that ψ ∈ PGL(2, q) as well.

Now apply Lemma 2.2.18 to ψ. If ψ = σaτcσd with appropriate a, d ∈ F∗
q and c ∈ Fq,

then

kg = σaτcσdf

has the same degree as f by Lemma 2.2.23, so deg kg = j = e and j ∈ Be.
If ψ = σaτcσdϕ with appropriate a, d ∈ F∗

q and c ∈ Fq, then ϕ f has degree 1 − e, so

kg = σaτcσdϕ f

has degree 1 − e as well. Thus j = 1 − e ∈ Be.
Now suppose that ψ = σbτdϕτcσa with appropriate b, a ∈ F∗

q, c, d ∈ Fq, and

kg = ψf = σbτdϕτcσa f,

which we may rewrite as ϕτcσaf = kτdσb−1g. Lemma 2.2.23 yields that applying σa to
a monomial introduces only a factor. Renaming b−1 to b and collecting all the factors
in a new constant k ∈ Fq, we have

(ϕτcf)(x) != k(τdg)(x) = k
(
(x+ d)j + dj

)
=

j∑
i=1

(
j

i

)
kdj−1xi

= x
((1

x
+ c

)e

+ ce
)

= x
e∑

i=1

(
e

i

)
ce−ix−i =

e∑
i=1

(
e

i

)
ce−ixq−i.

(2.14)

Let e = ∑
i∈Ie

2i and j = ∑
i∈Ij

2i be the binary expansions of e and j. Now, let i = 2i1

with i1 ∈ Ij minimal. Then by Lemma 2.2.22
(

j
i

)
= 1, so on the right-hand side there

is a term of degree i. So, if we are to have equality in Equation (2.14), there needs to
be a term of degree i on the left-hand side too. That means

(
e

q−i

)
needs to be 1. We

have

q − i =
n−1∑
l=i1

2l,

thus i1, . . . , n − 1 are necessarily in Ie. On the other hand, let i = 2i2 with i2 ∈ Ie

minimal. Then on the left-hand side there is a term of degree q − i, so for equality we
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need a term of degree q − i on the right-hand side as well. As

q − i =
n−1∑
l=i2

2l,

we therefore need i2, . . . , n − 1 ∈ Ij. All in all, we have i1 ≤ i2 ≤ i1, so i1 = i2 and
e = j and thus j ∈ Be.

Case 2: Let A1 = (1, 0, 0), A2 = (0, 1, 0) and A3 = (0, 0, 1) and assume φ(Ai) = Ak

for a pair (i, k) ∈ {1, 2, 3}2. Because S3 acts transitively on {A1, A2, A3}, we can find a
composition ψ1 of inv and ϕ transformations so that there is projectivity φ1 mapping
H(ψ1f) to H(f) with φ1(A3) = Ai (cf. Examples 2.2.2 and 2.2.3). Similarly, we can
find a composition ψ2 of inv and ϕ, so that there is a projectivity φ2 mapping H(g) to
H(ψ2g) with φ2(Ak) = A3. Now ψ1f and ψ2g are o-monomials with exponents ẽ ∈ Be,
respectively j̃ ∈ Bj. Therefore, the first case, applied to H(ψ1f) and H(ψ2g), yields
j̃ ∈ Bẽ = Be and since j ∈ Bj̃ also j ∈ Be.

Case 3: Assume φ−1(Ai) /∈ {A1, A2, A3} for i = 1, 2, 3, that is, there are distinct
s̃1, s̃2, s̃3 ∈ F∗

q with φ−1(Ai) = (1, s̃i, s̃
e
i ) for i = 1, 2, 3. Then there are also distinct

t̃1, t̃2, t̃3 ∈ F∗
q with φ(Ai) = (1, t̃i, t̃ji ). Our aim is to show that this cannot actually

happen.

The projectivity φ1 induced by the matrix1 0 0
0 s̃1 0
0 0 s̃e

1

 (2.15)

stabilizes H(f). Indeed,

φ1H(f) = {(1, s̃1s, (s̃1s)e) : s ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)} = H(f).

Usefully, φ1 maps (1, 1, 1) to (1, s̃1, s̃
j
1). Analogously, let the projectivity φ2 map (1, 1, 1)

to (1, t̃1, t̃j1), while stabilizing H(g). All in all, we obtain the following situation.

H(f) φ−1
1→ H(f) φ→ H(g) φ−1

2→ H(g)
(1, 0, 0) 7→ (1, 0, 0) 7→ (1, t̃1, t̃j1) 7→ (1, 1, 1)
(0, 1, 0) 7→ (0, 1, 0) 7→ (1, t̃2, t̃j2) 7→ (1, r, rj)
(0, 0, 1) 7→ (0, 0, 1) 7→ (1, t̃3, t̃j3) 7→ (1, u, uj)
(1, 1, 1) 7→ (1, s̃1, s̃

e
1) 7→ (1, 0, 0) 7→ (1, 0, 0)

(1, v, ve) 7→ (1, s̃2, s̃
e
2) 7→ (0, 1, 0) 7→ (0, 1, 0)

(1, w, we) 7→ (1, s̃3, s̃
e
3) 7→ (0, 0, 1) 7→ (0, 0, 1),

with distinct v, w ∈ Fq \ {0, 1} and also distinct r, u ∈ Fq \ {0, 1}. Thus we may replace
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φ by φ−1
2 φφ−1

1 . Then φ is induced by the matrix

A =

a b c
a br cu
a brj cuj

 ,
with a, b, c ∈ F∗

q being appropriate constants. Because φ((1, 1, 1)) = (1, 0, 0) and
φ((1, w, we)) = (0, 0, 1) we obtain the linear system

a + br + cu = 0,
a + brj + cuj = 0,
a + bwr + cweu = 0,
a + bwrj + cweuj = 0

(2.16)

for a, b, and c. The corresponding matrix
1 r u
1 rj uj

1 wr weu
1 wrj weuj


has full rank: After adding the first row to the second and the third row to the fourth,
adding the new second row, scaled with w, to the new fourth row yields

1 r u
0 r + rj u+ uj

1 wr weu
0 w(r + rj) we(u+ uj)

 ∼


1 r u
0 r + rj u+ uj

1 wr weu
0 0 (w + we)(u+ uj)

 .

The entries (w + we)(u+ uj) and r + rj are never zero, as indicated by Lemma 2.2.24.
But then the linear system in (2.16) has only the trivial solution a = b = c = 0, which
is a contradiction to φ being a projectivity. So this case is impossible.

Remark. In essence, when obtaining the equivalent monomial hyperovals to a mono-
mial hyperoval one needs to only consider permutations of the coordinates. So for
o-monomials we have that o-equivalence is the same as equivalence under the group ac-
tion of S3 on the set of o-monomials, which we mentioned after Example 2.2.2. However,
and this is the point making the proof difficult, this does not mean that a collineation
φ taking H(xe) to H(xj) for e and j o-exponents necessarily maps the points (1, 0, 0),
(0, 1, 0), and (0, 0, 1) onto each other: If a collineation in the stabilizer maps one of
those points to some affine point (1, s, se) for s ∈ F∗

q, then φ is not guaranteed to have
this property. In Subsection 3.1.3 we survey the stabilizers of monomial hyperovals and
one takeaway from there is that only translation hyperovals are affected by this. Indeed,
the bulk of the work for the first case in the proof of Theorem 2.2.25 was concerned
with a translation o-exponent being transformed into itself.

Another interesting aspect of Theorem 2.2.25 is its origin. The first implication is
easy and a quick reference is [22, Theorem 8.4.3]. In the survey [42] about ovals Penttila
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attributes this result to Segre and Bartocci [45, 46], but we have not been able to confirm
this independently. The proof we have given is to the best of our knowledge new, as its
central tool, the magic action, has had yet to be developed in the times of [45, 46].

To conclude this subsection, we aim to utilize the σ̃a transformation to gain insight
about binomial o-polynomials. In fact, there are no known o-binomials. We follow [34]
and start with a theorem that allows assuming that two coefficients of an o-polynomial
coincide.

2.2.26 Theorem. Let f(x) = ∑ q−2
2

k=1 a2kx
2k be an o-polynomial, with a pair (i, j), 1 ≤

i ̸= j ≤ q−1
2 , i − j and q − 1 coprime, and a2i, a2j ̸= 0. Then f is o-equivalent to an

o-polynomial g(x) = ∑ q−2
2

k=1 b2kx
2k with b2i = b2j and b2k = 0 if and only if a2k = 0 for

1 ≤ k ≤ q−2
2 .

Proof. Let b ∈ F∗
q. Then g := σ̃bf is an o-polynomial o-equivalent to f by Theorem

2.2.14 and we have g(x) = 1
f(b)f(bx). Then

g(x) =
q−2

2∑
k=1


q−2

2∑
l=1

a2lb
2l


−1

a2kb
2k

︸ ︷︷ ︸
=:ck

x2k.

Therefore, we have

c2i

c2j

= a2ib
2i

a2jb2j
= b2(i−j) a2i

a2j

.

Because gcd(i− j, q−1) = 1 and x 7→ x2 is bijective over Fq, there is a choice for b ∈ F∗
q

satisfying c2i

c2j
= 1.

2.2.27 Corollary. If f(x) = ax2i + bx2j is an o-binomial, then gcd(i − j, q − 1) ̸= 1.
Also, there are no o-binomials if q − 1 is prime.

Proof. Assume f(x) = ax2i + bx2j is an o-binomial with gcd(i − j, q − 1) = 1. Then
Theorem 2.2.26 would yield an o-binomial g(x) = âx2i + âx2j. Then g(1) = â + â =
0 = g(0), so g is not an o-polynomial.

If q − 1 is prime, then gcd(i− j, q − 1) = 1, so there are no o-binomials then.
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3 Known Families and Formulas for
o-Monomials

In this chapter we survey the known families of hyperovals. Because we continue our
investigation into the o-monomials in Subsection 3.3, we reproduce proofs for the o-
monomials in the first subsection. Theorem 2.2.25 indicates that for each o-monomial,
there are at most six different o-equivalent o-monomials. Our aim is to give formulas
for these six o-equivalent monomials for the known families. For this, assume q to be a
power of 2 throughout this chapter.

When we speak of a hyperoval of a type, we mean a hyperoval equivalent to the
hyperoval induced by the o-polynomial of said type, e.g. a Segre hyperoval is a hyperoval
equivalent to the hyperoval induced by the Segre o-polynomial x6.

Let us also mention that for small values of q the different families may intersect, but
(often with arguments involving the stabilizer) it can be shown that the families are
indeed distinct.

Before beginning, we turn to some classification results. A lot of effort has been
put in this topic and for small fields it is possible to do an exhaustive search of the
corresponding plane. For q = 26 = 64 this has been done in [48], where earlier endeavors
for smaller fields are described as well. In short, all known hyperovals, except for one
sporadic one, belong to one of infinite families described later. The sporadic one is due
to Penttila and O’Keefe [31] in PG(2, 32) and can be described via the o-polynomial

f(x) = x4 + ω11x6 + ω20x8 + ω11x10 + ω6x12 + ω11x14 + x16 + ω11x18 + ω20x20

+ ω11x22 + ω6x24 + ω11x26 + x28,

where ω ∈ F32 is a primitive root of F32 satisfying ω5 = ω2 + 1.
Another kind of classification result concerns o-monomials and o-exponents of a spe-

cific form. In [14] Cherowitzo proves the only o-exponents of the form 2i + 2j are the
ones already known. Similarly, o-exponents of the form 2i + 2j + 2k are also classified
in [49], as indicated in [8], although we were not able to check this independently.

Further, there are also results about the classification of o-polynomials with low
degree. Concerning them we have the following theorem.

3.0.1 Theorem ([8, Theorem 1.2]). Let f ∈ Fq[x] be an o-polynomial of degree less
than 1

2q
1
4 . Then f is o-equivalent to either x6 or x2k with k ∈ N, that is, H(f) is either

a Segre hyperoval or a translation hyperoval.

The special case of f being an o-monomial had been proved earlier in [21] and later
with a different proof also in [50]. In the preprint [17] Theorem 3.0.1 is strengthened
to also cover polynomials with degree up to q 1

4 using an alternative approach.
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3 Known Families and Formulas for o-Monomials

An interesting corollary is that the only exceptional o-polynomials, that is, polyno-
mials that are o-polynomials for infinitely many planes, are x6 and x2k with k ∈ N.

Finally, we mention that there are other surveys covering the known families in a
more condensed way. See, for example, [2, Section 15].

3.1 Monomial Families
Monomial hyperovals are interesting for a number of reasons, the simplicity of the cor-
responding o-polynomials being only the first. Their stabilizers are well understood and
are surveyed in the last subsection. A second interesting application arises in Chapter 4,
where we investigate the connection between o-monomials and 2-to-1 binomials. A long
standing conjecture by Glynn [18] states that there are no further o-monomials other
than the ones described in this section. The conjecture is supported by a computer
search employing Theorem 2.1.19 up to n = 30 by Glynn in [19].

3.1.1 Regular, Translation and Segre Hyperovals
We begin with a simple condition based on Theorem 2.1.15 for a monomial to be an
o-monomial.

3.1.1 Theorem. The monomial f(x) = xe ∈ Fq[x] is an o-polynomial if and only if

(i) gcd(e, q − 1) = 1, gcd(e− 1, q − 1) = 1, and

(ii) ((x+ 1)e + 1)xq−2 is a permutation polynomial of Fq.

Proof. For monomials f(x) = xe we always have f(0) = 0 and f(1) = 1. The condition
gcd(e, q−1) = 1 is equivalent to f being a permutation polynomial and gcd(e−1, q−1) =
1 is equivalent to

f0(x) = ((x+ 0)e + 0e)xq−2 = xe−1

being a permutation polynomial. Finally, for a ∈ F∗
q we have

fa(x) = ((x+ a)e + ae)xq−2 =
(
ae
(
x

a
+ 1

)e

+ ae
)
xq−2

= ae
((

x

a
+ 1

)e

+ 1
)
xq−2 = ae+q−2

((
x

a
+ 1

)e

+ 1
)(

x

a

)q−2

= ae−1
((

x

a
+ 1

)e

+ 1
)(

x

a

)q−2
= ae−1f1

(
x

a

)
,

so fa is a permutation polynomial if and only if f1 is.

The first and easiest hyperoval is the regular hyperoval, which we have already seen
in Example 2.1.16. Its first description appeared in [4, Section 5.3].

3.1.2 Theorem (Regular Hyperoval). For q even, the polynomial f(x) = x2 ∈ Fq[x] is
an o-polynomial.
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3.1 Monomial Families

This hyperoval H(x2) arises from the conic {(x, y, z) ∈ PG(2, q) : xz = y2} by adding
its nucleus. Since in odd characteristic every oval is a conic by Segre’s Theorem and
other families of hyperovals do not arise from conics, hyperovals of this family are called
regular. See Subsection 4.2.3 for conics and Segre’s Theorem.

The next family is the family of translation hyperovals, which also contains the regular
hyperovals. Their discovery is due to Segre [44]. We have not been able to check this
specific reference, but it is widely attributed to him (see, for example, [2, 21]).

3.1.3 Theorem (Translation Hyperoval). For q = 2n and i ∈ N with gcd(n, i) = 1, the
monomial f(x) = x2i ∈ Fq[x] is an o-polynomial.

Proof. We apply Theorem 3.1.1. Firstly, e = 2i is only divisible by powers of 2, while
q − 1 is not divisible by 2 at all. Hence gcd(e, q − 1) = 1. Further, we have

gcd(2i − 1, 2n − 1) = gcd(i, n) = 1.

Finally,

f1(x) = ((x+ 1)e + 1)xq−2 = xe−1,

so f1 is a permutation polynomial too.

These o-polynomials f are precisely the ones inducing additive maps on Fq (see [22,
Section 8.5] or [36]), or equivalently, they are precisely those o-polynomials remain-
ing fixed under the transformations τc and τ̃c with c ∈ Fq. Hence the correspond-
ing hyperoval H(f) is stabilized by the projectivity φ : PG(2, q) → PG(2, q) with
(x, y, z) 7→ (x, y + cx, z + f(c)x) induced by the matrix

τcf =

 1 0 0
c 1 0

f(c) 0 1

 .
When restricting φ to the affine plane {(1, s, t) : s, t ∈ Fq} embedded in PG(2, q), one
obtains a translation, since 1 0 0

c 1 0
f(c) 0 1


1
s
t

 =

 0
c

f(c)

+

1
s
t


and for this reason the hyperovals are called translation hyperovals. Note that some-
times (a generalization) of this property is used to define translation hyperovals, see for
example [42].

Next we have the Segre-Bartocci hyperovals, introduced in [46].

3.1.4 Theorem (Segre o-Monomials). For q = 2n with n ≥ 3 odd, the monomial
f(x) = x6 ∈ Fq[x] is an o-polynomial.
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3 Known Families and Formulas for o-Monomials

An easy way to prove this is to utilize a connection to the Dickson polynomials, for
which we refer to [23, Section 2.4]. They make up classical examples of permutation
polynomials, as it is well understood under which conditions they induce permutations.

3.1.5 Definition. Let q be a prime power. Let a ∈ Fq and k ∈ N. The polynomial

Dk(x, a) =
⌊ k

2 ⌋∑
i=0

k

k − i

(
k − i

i

)
(−1)iaiXk−2i ∈ Fq[x]

is called the kth Dickson polynomial with parameter a.

3.1.6 Theorem ([23, Theorem 2.24]). Let q be a prime power. Let a ∈ F∗
q and k ∈ N.

Then the Dickson polynomial Dk(x, a) ∈ Fq[x] is a permutation polynomial if and only
if gcd(k, q2 − 1) = 1.

Proof (of the Segre o-Monomials). We have gcd(6, 2n − 1) = gcd(3, 2n − 1), as 2 is not
a divisor of 2n − 1. Further, letting n = 2l + 1 with l ∈ N,

22l+1 − 1 ≡ 2 · 4l − 1 ≡ 2 · 1 − 1 = 1 mod 3

and thus gcd(3, q − 1) = 1.
Similarly, 5 is not a divisor of 2n − 1, as

22l+1 − 1 = 2 · 4l − 1 ≡ ±2 − 1 ̸= 0 mod 5,

so gcd(5, q − 1) = 1.
Lastly, we need

f1(x) = ((x+ 1)6 + 1)xq−2 = (x6 + x4 + x2)xq−2 = x5 + x3 + x

to be a permutation polynomial. To this end, notice D5(x, 1) = x5 + x3 + x. By
Theorem 3.1.6 the Dickson polynomial D5(x, 1) is a permutation polynomial if and
only if gcd(5, q2 − 1) = 1. But we have

q2 − 1 = 24l+2 − 1 = 4 · 16l − 1 ≡ 4 − 1 = 3 mod 5.

3.1.2 Glynn Hyperovals
In this subsection we treat the Glynn1 and Glynn2 hyperovals, originally found by Glynn
in 1985 [18], using a computer search to find monomial hyperovals. Although Glynn
considered the Glynn2 o-exponent first, it is the more complicated one and is thus now
known as the Glynn2 o-exponent.

The long proofs we give are the ones given by Glynn himself. As far as we know,
there is only one other known direct proof due to Cherowitzo [10, Appendix], which
itself is also very long and requires some additional machinery.

40



3.1 Monomial Families

3.1.7 Definition. Let q = 2n with n odd and let σ = 2n+1
2 , that is, σ is the unique

least positive residue mod q − 1 satisfying

σ2 ≡ 2 mod q − 1.

Let

γ =
2 3n+1

4 : n ≡ 1 mod 4,
2n+1

4 : n ≡ 3 mod 4,

that is, γ is the unique least positive residue satisfying

γ4 ≡ 2 mod q − 1.

3.1.8 Theorem (Glynn1 Hyperovals). Let q = 2n with n odd and let e = 3σ + 4 =
3 · 2n+1

2 + 4. Then the polynomial f(x) = xe ∈ Fq[x] is an o-polynomial.

The proof is of geometric nature: Instead of utilizing Theorem 3.1.1 (as usual), we
show that every line of PG(2, q) meets the Glynn1 hyperoval in at most two points. The
crucial part will be the lines that do not contain the points (0, 1, 0) or (0, 0, 1), which
we handle in the following lemma.

3.1.9 Lemma. Let q = 2n with n odd. Then, for all m ∈ Fq, the equation

yσ+2 + y3 +m = 0 (3.1)

over Fq has at most two solutions.

Proof. Suppose Equation (3.1) has at least two solutions in Fq. The idea is to show
that for any two distinct solutions α, β ∈ Fq the trace equality Tr(α + β) = 1 holds.
Indeed, if we had three distinct solutions α, β, δ ∈ Fq, we would have

1 = Tr(α + β) + Tr(α + δ) + Tr(β + δ)
= Tr(α + α + β + β + δ + δ) = 0.

So, let α, β ∈ Fq be distinct solutions of Equation (3.1) for the remainder of the proof.
Step 1: Reduce (3.1) to a linear equation holding for y ∈ {α, β}. Firstly, we have

(y + α)(y + β) = y2 + (α + β)y + αβ = 0

for y ∈ {α, β}, so

y2 = (α + β)y + αβ. (3.2)

Secondly, by choosing a, b ∈ Fq to be the solutions of the linear system{
αa + b = ασ,
βa + b = βσ,
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3 Known Families and Formulas for o-Monomials

we have that α and β are solutions of

yσ + ay + b = 0. (3.3)

Note that a ̸= 0, as that would imply a unique solution of Equation (3.3). Raising (3.3)
to the σth power yields

y2 + aσyσ + bσ = 0,

since σ2 ≡ 2 mod q − 1. Applying (3.3) again, one gets

y2 + aσ(ay + b) + bσ = 0,

so

y2 + aσ+1y + aσb+ bσ = 0. (3.4)

Since Equation (3.2) and (3.4) are two quadratic equations with agreeing solutions, we
must have α + β = aσ+1 and αβ = aσb+ bσ. Equation (3.2) now takes the form

y2 = aσ+1y + aσb+ bσ. (3.5)

We use Equation (3.3) and (3.5) to reduce Equation (3.1), where we hide the constant
terms in a (from line to line changing) constant C ∈ Fq.

yσ+2 + y3 +m = y2 (yσ + y) +m =
(
aσ+1y + aσb+ bσ

)
(ay + b+ y) +m

=
(
aσ+1y + aσb+ bσ

)
((a+ 1)y + b) +m

= (a+ 1)aσ+1y2 +
(
aσ+1b+ aσb(a+ 1) + bσ(a+ 1)

)
y + C

= (a+ 1)aσ+1
(
aσ+1y + aσb+ bσ

)
+ (aσb+ bσ(a+ 1)) y + C

=
(
(a+ 1)a2σ+2 + aσb+ (a+ 1)bσ

)
y + C.

Step 2: Obtain Tr(α + β) = 1. Since we have a linear equation with two distinct
roots, each coefficient has to be zero. In particular, we have

(a+ 1)a2σ+2 = aσb+ (a+ 1)bσ. (3.6)

As a ̸= 0, we may multiply (3.6) by (a+ 1)σ+1a−2σ−2 to obtain

(a+ 1)σ+2 = a−σ−2(a+ 1)σ+1b+ a−2σ−2(a+ 1)σ+2bσ

= a−σ−2(a+ 1)σ+1b+
(
a−σ−2(a+ 1)σ+1b

)σ

using σ2 ≡ 2 mod q − 1 again. Therefore, Tr ((a+ 1)σ+2) = 0. As

(a+ 1)σ+2 = (aσ + 1) (a2 + 1) = aσ+2 + aσ + a2 + 1
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3.1 Monomial Families

and Tr(1) = 1 (since n is odd) and Tr(aσ + a2) = 0 we may conclude Tr (aσ+2) = 1.
Finally, we have (

aσ+2
)σ

2 = a1+σ = α + β

and therefore Tr(α + β) = 1.

Proof (of the Glynn1 hyperovals). By Theorem 2.2.25 we may prove that ẽ = e
e−1 (taken

mod q − 1) defines an o-monomial instead. Using the formulas we derive in Theorem
3.3.2, we obtain

ẽ =


2·2n+2

n+1
2

3 n ≡ 1 mod 4,
2

n+1
2 +2
3 n ≡ 3 mod 4

≡ σ + 2
3 mod q − 1

and that xẽ is a permutation polynomial of Fq. Also note that the derivations of the
formulas in Theorem 3.3.2 do not depend on e actually being an o-exponent!

Firstly, only the points (0, 1, 0) and (0, 0, 1) are on l∞ =
〈( 1

0
0

)〉⊥
. On the lines

la =
〈( a

1
0

)〉⊥
for a ∈ Fq we have (0, 0, 1) and one other point from H(xẽ), since x 7→ x

is a permutation of Fq. Similarly, on the lines la,0 =
〈( a

0
1

)〉⊥
we have (0, 1, 0) and one

other point from H(xẽ), since x 7→ xẽ is a permutation of Fq.
So, we only need to handle the lines la,b with a ∈ Fq and b ∈ F∗

q. A point (1, x, xẽ) ∈
H(xẽ) with x ∈ Fq is on la,b =

〈( a
b
1

)〉⊥
if and only if

a+ bx+ xẽ = 0. (3.7)

As n is odd, we may substitute x = b3(σ+1)y3 in (3.7) to obtain

0 =
(
b3(σ+1)y3

)σ+2
3 + b3(σ+1)+1y3 + a,

= bσ2+3σ+2yσ+2 + b3σ+4y3 + a

and setting m = a
b3σ+4 thus

yσ+2 + y3 +m = 0. (3.8)

By Lemma 3.1.9 Equation (3.8) has at most two solutions.

Remark. Interestingly, now that we know that e = 3σ + 4 is an o-exponent, we can
sharpen the statement of Lemma 3.1.9 a bit: By Lemma 2.1.3 we know that each line
meeting H(xẽ) contains exactly two points of the hyperoval. Therefore, Equation (3.1)
has exactly two or zero solutions, depending on the corresponding line of PG(2, q).

Next, we turn to the Glynn2 hyperovals.
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3 Known Families and Formulas for o-Monomials

3.1.10 Theorem (Glynn2 Hyperovals). Let q = 2n with n odd and let

e = γ + σ =
2 3n+1

4 + 2n+1
2 : n ≡ 1 mod 4,

2n+1
4 + 2n+1

2 : n ≡ 3 mod 4.

Then f(x) = xe ∈ Fq[x] is an o-polynomial.

The crucial part of the proof is establishing that f1(x) is an o-polynomial and the
key ingredient is the following generalization to the classical trace condition for the
solvability of quadratic equations, given by Glynn [18, Result 5].

3.1.11 Theorem. Let n, k ∈ N with gcd(n, k) = 1, a, b ∈ F2n and let g ∈ N with
g ≡ (2k − 1)−1 mod 2n − 1. Then the equation

x2k + ax+ b = 0 (3.9)

over F2n has either

• one unique solution if a = 0,

• no solution if a ̸= 0 and Tr
(

b
ag+1

)
= 1, or

• exactly two solutions if a ̸= 0 and Tr
(

b
ag+1

)
= 0.

Proof. For our purposes the weaker statement that Equation (3.9) having a solution
implies Tr

(
b

ag+1

)
= 0 when a ̸= 0 suffices, so we only prove that. Assume that a ̸= 0.

We have

2k · g = (2k − 1)g + g ≡ 1 + g mod 2n − 1,

so dividing Equation (3.9) by ag+1 yields
(
x

ag

)2k

+ x

ag
+ b

ag+1 = 0.

Suppose there is an element t ∈ Fq satisfying t2k + t+ b
ag+1 = 0. Then

0 = Tr
(
t2

k + t+ b

ag+1

)
= Tr

(
t2

k + t
)

+ Tr
(

b

ag+1

)
= Tr

(
b

ag+1

)
.

Now, the general strategy is as follows. We assume two elements s, t ∈ Fq get mapped
to the same element under f1. Using this relation, we derive an equation of the type
xγ + Ax + B = 0, which has at least one solution coming from s and t. We can then
infer by Theorem 3.1.11 that some trace equation holds and use the specific properties
of σ and γ to show that this trace equation, in fact, cannot hold. The details are highly
technical and we begin with a lemma that helps to establish the equation.

3.1.12 Notation. Let q = 2n with n odd and let s, t ∈ F∗
q be two distinct elements.

Define
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3.1 Monomial Families

1. S := S(s, t) := s+ t,

2. T := T (s, t) := st,

3. Y := Y (s, t) := TS−2 = st
s2+t2 ,

4. βa := βa(s, t) := (sa + ta)Y S−a = sa+ta

(s+t)a
st

s2+t2 for a ∈ N, and

5. K := K(s, t) := βγ−1.
3.1.13 Lemma. Let q = 2n with n odd and let s, t ∈ F∗

q be two distinct elements. Then
we have

1. βσ−1 = K +Kγ,

2. βσ+γ−1 = K +K2 +Kγ +Kγ+1 +Kσ +Kγσ, and

3. Tr(K) = 0.
Proof. This proof is done mostly by direct computations. We begin with some auxiliary
statements. Firstly, we have β0 = (s0 + t0)Y S−2 = 0 and for m ∈ N we have

β2m = s2m + t2
m

(s+ t)2m Y = Y.

Furthermore, for any a ∈ N and l ∈ {1, . . . , a} we have

βa = Y −1βlβa−l+1 + βl−1βa−l, (3.10)

proven by direct computation, denoting the right-hand side by L:

L = Y −1
(
sl + tl

)
Y S−l

(
sa−l+1 + ta−l+1

)
Y S−a+l−1

+
(
sl−1 + tl−1

)
Y S−l+1

(
sa−l + ta−l

)
Y S−a+l

=
(
sl + tl

) (
sa−l+1 + ta−l+1

)
Y S−a−1 +

(
sl−1 + tl−1

) (
sa−l + ta−l

)
Y 2S−a+1

= Y S−a−1
(
sa+1 + slta−l+1 + tlsa−l+1 + ta+1

)
+ Y S2 · Y S−a−1

(
sa−1 + sl−1ta−l + sa−ltl−1 + ta−1

)
.

By recalling Y S2 = T = st we arrive at

L = Y S−a−1
(
sa+1 + slta−l+1 + tlsa−l+1 + ta+1 + tsa + slta−l+1 + sa−l+1tl + sta

)
= Y S−a−1

(
sa+1 + ta+1 + tsa + sta

)
= Y S−a−1 ((s+ t) (sa + ta))

= Y S−a (sa + ta) = βa.

Next, for m ∈ N0 we have

β2m−1 =
m−1∑
i=0

Y 2i

, (3.11)
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proven via induction. For m = 0 there is nothing to do, as β0 = 0. For the induction
step m − 1 7→ m we utilize Formula (3.10) using a = 2m − 1 and l = 2m−1. We then
obtain

β2m−1 = Y −1β2m−1β2m−1 + β2m−1−1β2m−1−1

= Y −1Y 2 +
(

m−2∑
i=0

Y 2i

)2

=
m−1∑
i=0

Y 2i

.

In particular, we have βq−1 = Tr(Y ).
Now, since

Y = st

s2 + t2
= s

s+ t
+
(

s

s+ t

)2
,

we have βq−1 = Tr(Y ) = 0.
And as the last auxiliary statement, we have Y = K + Kσ + Kγ + Kσγ. Consider

the case n ≡ 1 mod 4 first by writing n = 4l + 1 with l ∈ N. Then σ = 22l+1 and
γ = 23l+1. As K = βγ−1, we have

K +Kσ +Kγ +Kγσ =
3l∑

i=0
Y 2i

︸ ︷︷ ︸
=:B0

+
3l∑

i=0
Y 2i·22l+1

︸ ︷︷ ︸
=:B1

+
3l∑

i=0
Y 2i·23l+1

︸ ︷︷ ︸
=:B2

+
3l∑

i=0
Y 2i·25l+2

︸ ︷︷ ︸
=:B3

.

By applying Y 24l+1 = 1, while coloring those terms which will combine to Tr(Y ) = 0 in
the sum, we may calculate

B1 =
3l∑

i=0
Y 2i+2l+1 =

5l+1∑
i=2l+1

Y 2i =
4l∑

i=2l+1
Y 2i +

l∑
i=0

Y 2i

,

B2 =
3l∑

i=0
Y 2i+3l+1 =

6l+1∑
i=3l+1

Y 2i =
4l∑

i=3l+1
Y 2i +

2l∑
i=0

Y 2i

,

B3 =
3l∑

i=0
Y 2i+5l+2 =

8l+2∑
i=5l+2

Y 2i =
4l∑

i=l+1
Y 2i + Y.

Since B0 and B3 sum to Tr(Y ) + Y = Y , we have Y = K + Kσ + Kγ + Kγσ. In this
case, we can continue by showing βσ−1 = K +Kγ. We have

βσ−1 = Tr(Y ) + βσ−1 =
4l∑

i=0
Y 2i +

2l∑
i=0

Y 2i =
3l∑

i=0
Y 2i +

4l∑
i=3l+1

Y 2i +
2l∑

i=0
Y 2i

= βγ−1 +
6l+1∑

i=3l+1
Y 2i = βγ−1 +

3l∑
i=0

Y 23l+1

= βγ−1 +
( 3l∑

i=0
Y 2i

)23l+1

= βγ−1 + βγ
γ−1 = K +Kγ.
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The other case n ≡ 3 mod 4 is a little more straightforward: We write n = 4l + 3
with l ∈ N0. Then σ = 22l+2 and γ = 2l+1, leading to

K +Kσ +Kγ +Kγσ =
l∑

i=0
Y 2i +

l∑
i=0

Y 2i·22l+2 +
l∑

i=0
Y 2i·2l+1 +

l∑
i=0

Y 2i·23l+3

=
l∑

i=0
Y 2i +

3l+2∑
i=2l+2

Y 2i +
2l+1∑

i=l+1
Y 2i +

4l+2∑
i=3l+3

Y 2i + Y

= Tr(Y ) + Y = Y.

Continuing with proving βσ−1 = K +Kγ, we have

βσ−1 =
2l+1∑
i=0

Y 2i =
l∑

i=0
Y 2i +

2l+1∑
i=l+1

Y 2i = βγ−1 +
l∑

i=0
Y 2i·2l+1 = βγ−1 + βγ

γ−1 = K +Kγ.

To verify the statement regarding βσ+γ−1, we use Formula (3.10) with a = σ + γ − 1
and l = σ to obtain

βσ+γ−1 = Y −1βσβσ+γ−1−σ+1 + βσ−1βγ−1

= Y + (K +Kγ)K
= Kσ +Kγ+1 +Kγ +Kγσ +K2 +K.

Finally, K is a sum of Y 2i terms, so Tr(K) = 0, as Tr(Y ) = 0.

The next two lemmas are needed to rewrite the equation in question in a more
convenient form.

3.1.14 Lemma. For q = 2n with n odd and s, t ∈ F∗
q distinct,

(γ − 1)−1 ≡ γσ + σ + γ + 1 mod q − 1

holds. In particular, x 7→ xγ−1 is a permutation of Fq.

Proof. We have

(γ − 1)(γσ + σ + γ + 1) ≡ 2 + γσ + σ + γ − γσ − σ − γ − 1 mod q − 1
= 1.

3.1.15 Lemma. For q = 2n with n odd and s, t ∈ F∗
q distinct, we have K ̸= 0 and

Kγ−1 + 1 ̸= 0.

Proof. By the definition of K, we have

K = βγ−1 = sγ−1 + tγ−1

(s+ t)γ+1 st ̸= 0,

as sγ−1 ̸= tγ−1 by Lemma 3.1.14.
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3 Known Families and Formulas for o-Monomials

Further, if Kγ−1 + 1 = 0 were to hold, we would have K = 1. Then, since n is
odd, Tr(K) = 1 would follow. This, however, is ruled out by Lemma 3.1.13, stating
Tr(K) = 0.

We are now ready to tackle the proof of Theorem 3.1.10.

Proof (of Glynn2 hyperovals). Firstly, the formulas obtained in Theorem 3.3.3 and The-
orem 3.3.4 are valid independent of whether e is an o-exponent, so we can conclude that
gcd(e, q − 1) = gcd(e− 1, q − 1) = 1 holds.

By Theorem 3.1.1 only h(x) = ((x + 1)e + 1)xq−2 being a permutation polynomial
remains to be shown. For a contradiction, suppose there are two distinct elements s, t ∈
Fq satisfying h(s) = h(t). Since x 7→ xe is a permutation of Fq, we have h−1({0}) = {0}.
Therefore, s and t are not zero.

Step 1: Deriving the equation in terms of K. We have

h(s) = ((s+ 1)σ+γ + 1)sq−2 = ((sσ + 1) (sγ + 1) + 1) sq−2

=
(
sσ+γ + sσ + sγ

)
sq−2 = sσ+γ−1 + sσ−1 + sγ−1.

Multiplying 0 = h(s) + h(t) by Y S−(σ+γ−1) gives(
sσ+γ−1 + tσ+γ−1

)
Y S−(σ+γ−1)︸ ︷︷ ︸

=βσ+γ−1

+
(
sσ−1 + tσ−1

)
Y S−(σ+γ−1)︸ ︷︷ ︸

=βσ−1S−γ

+
(
sγ−1 + tγ−1

)
Y S−(σ+γ−1)︸ ︷︷ ︸

=βγ−1S−σ

= 0.

Substituting x = S−γ and using the formulas given in Lemma 3.1.13 yields

Kxγ + (K +Kγ)x+K +K2 +Kγ +Kγ+1 +Kσ +Kγσ = 0.

Since K ̸= 0 by Lemma 3.1.15, we might divide by K to arrive at

xγ +
(
Kγ−1 + 1

)
x+K +Kγ−1 +Kγ +Kσ−1 +Kγσ−1 + 1 = 0. (3.12)

Step 2: Reformulating Equation (3.12) in terms of A := Kγ−1 + 1. By Lemma 3.1.15
we have A ̸= 0 and by setting

g := γσ + σ + γ + 1 ≡ (γ − 1)−1 mod q − 1

we have K = (A+ 1)g by Lemma 3.1.14.
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Next, we rewrite the constant parts of Equation (3.12) in terms of A.

B : = K +Kγ−1 +Kγ +Kσ−1 +Kγσ−1 + 1
= A+K(1 +Kγ−1) +Kσ−1 +Kγσ−1

= A+ (A+ 1)gA+Kσ−1
(
1 +K(γ−1)σ

)
= A+ A(A+ 1)g + (A+ 1)g(σ−1)

(
1 +Kγ−1

)σ

= A+ A(A+ 1)g + Aσ(A+ 1)g(σ−1).

Calculating

g(σ − 1) = (γσ + σ + γ + 1)(σ − 1)
= γσ2 + σ2 + γσ + σ − γσ − σ − γ − 1
≡ 2γ + 2 − γ − 1 = γ + 1 mod q − 1

then yields

B = A+ A(A+ 1)g + Aσ(A+ 1)γ+1.

Equation (3.12) is now of the form

xγ + Ax+B = 0. (3.13)

Step 3: Reaching the contradiction with the trace equality. Equation (3.13) has at
least one solution x = S−γ by construction. Therefore, since A ̸= 0, by Theorem 3.1.11
we must have

Tr
(

B

Ag+1

)
= 0.

We calculate Tr
(

B
Ag+1

)
to be 1 now and thus reach a contradiction. We begin by

examining

B

Ag+1 = A−g
(
1 + (A+ 1)g + (A+ 1)γ+1Aσ−1

)
︸ ︷︷ ︸

:=L

.

We have

L = 1 + (A+ 1)γσ(A+ 1)σ(A+ 1)γ(A+ 1) + (A+ 1)γ(A+ 1)Aσ−1

= 1 +
(
Aγσ+σ + Aγσ + Aσ + 1 + Aσ−1

)
(A+ 1)γ(A+ 1)

= 1 +
(
Aγσ+σ + Aγσ + Aσ + Aσ−1 + 1

) (
Aγ+1 + Aγ + A+ 1

)
.
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Expanding yields

L = 1 + Aγσ+σ+γ+1 + Aγσ+σ+γ + Aγσ+σ+1 + Aγσ+σ

+ Aγσ+γ+1 + Aγσ+γ + Aγσ+1 + Aγσ

+ Aγ+σ+1 + Aσ+γ + Aσ+1 + Aσ + Aσ+γ + Aσ+γ−1 + Aσ + Aσ−1

+ Aγ+1 + Aγ + A+ 1.

Cancelling and artificially creating a g summand in the exponents gives

L = Ag + Ag−1 + Ag−γ + Ag−γ−1 + Ag−σ + Ag−σ−1 + Ag−γ−σ + Ag−γ−σ−1Ag−γσ

+ Ag−γσ−γ + Ag−γσ−2 + Ag−γσ−γ−2 + Ag−γσ−σ + Ag−γσ−σ−1 + Ag−γσ−γ−σ.

Next we group the terms of B
Ag+1 into parts which will amount to 0 when taking the

trace by underlining them in the same color. Note the relations

Aγσ−2 = Aσ(−γ−σ),

A−2−γσ−γ = Aγ(−γσ−σ−1),

A−σ−γσ−γ = Aγ(−γ−σ−1).

We have

B

Ag+1 = 1 + A−1 + A−γ + A−γ−1 + A−σ + A−σ−1 + A−γ−σ + A−γ−σ−1

+ A−γσ + A−γσ−γ + A−γσ−2 + A−γσ−γ−2 + A−γσ−σ + A−γσ−σ−1 + A−γσ−γ−σ

and, therefore,

Tr
(

B

Ag+1

)
= Tr(1) + Tr

(
A−1 +

(
A−1

)γ)
+ Tr

(
A−γ−1 +

(
A−γ−1

)σ)
+ Tr

(
A−σ +

(
A−σ

)γ)
+ Tr

(
A−σ−1 +

(
A−σ−1

)γ)
+ Tr

(
A−γ−σ +

(
A−γ−σ

)σ)
+ Tr

(
A−γσ−σ−1 +

(
A−γσ−σ−1

)γ)
+ Tr

(
A−γ−σ−1 +

(
A−γ−σ−1

)γ)
= Tr(1) + 0 = 1,

as n is odd.

3.1.3 Stabilizers of Monomial Hyperovals
This subsection is interesting to us mostly for its interplay with Theorem 2.2.25. In the
remark after its proof we already discussed how the stabilizers affect its conclusions.
Furthermore, in the third case of its proof we used a specific projectivity (given by
the matrix in (2.15)) always present in the stabilizer of H(xe) to simplify the given
situation.
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3.1 Monomial Families

First of all, any collineation induced by an automorphism of Fq stabilizes the mono-
mial hyperoval H(xe), as monomials have 1 as their coefficient. Therefore, we only need
to consider their homography stabilizer, that is, the set of projectivities from PGL(3, q)
stabilizing the hyperoval. The results surveyed here have been obtained in [32], if not
indicated otherwise.

We begin with the regular hyperovals and continue with the irregular translation
hyperovals.

3.1.16 Theorem. Let q = 2n with n ∈ N. Then

• for n = 1 a regular hyperoval has a transitive homography stabilizer of order 24
isomorphic to the symmetric group S4,

• for n = 2 a regular hyperoval has a transitive homography stabilizer of order 360
isomorphic to the alternating group A6, and

• for n ≥ 3 a regular hyperoval has a homography stabilizer of order (q+ 1)q(q− 1)
isomorphic to PGL(2, q) (see [22, Theorem 8.4.2 Corollary 6]).

3.1.17 Theorem. Let n, h ∈ N with n ≥ 3, 2 ≤ h ≤ n − 2, gcd(n, h) = 1 and set
q = 2n and e = 2h. Then the translation hyperoval H(xe) has a homography stabilizer
of order q(q−1), which fixes the points (0, 1, 0) and (0, 0, 1) and has {(1, s, se) : s ∈ Fq}
as the remaining orbit.

Interestingly, there is no need to distinguish between Segre and Glynn hyperovals (or
other types if they exist).

3.1.18 Theorem. Let e ∈ N such that H(xe) is a hyperoval of PG(2, q), though not a
translation hyperoval. Then

• if e2 − e + 1 ≡ 0 mod q − 1, the homography stabilizer of H has order 3(q − 1)
and has the orbits {(1, s, se) : s ∈ F∗

q} and {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

• otherwise the homography stabilizer of H has order q − 1 and has {(1, s, se) : s ∈
F∗

q} as one orbit, while fixing the points (1, 0, 0), (0, 1, 0) and (0, 0, 1).

The only o-exponents e known to satisfy e2 − e + 1 ≡ 0 mod q − 1 are e = 6, the
Segre o-exponent, for q = 32 and e = 20, the Glynn2 o-exponent, for q = 128. From
the known families these are the only possible examples, as 62 − 6 + 1 is constant,

(3σ + 4)2 − 3σ − 4 + 1 ≡ 21σ + 31 mod q − 1

grows slower than q − 1, and

(σ + γ)2 − σ − γ + 1 ≡ 0 mod q − 1

implies 9 ≡ 7σ + 6γ mod q− 1 by squaring, which also can happen only finitely many
times, since 7σ + 6γ grows slower than q − 1.
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3.2 Non-Monomial Families
3.2.1 q-Clans
In order to appreciate the construction of the Subiaco and Adelaide hyperovals we
make a quick detour to the theory of q-clans, as they are fundamentally connected to
those hyperovals. We only sketch their construction and follow [13, Section 2], where
also proofs for the given statements and further connections to other objects of finite
geometry can be found.

3.2.1 Definition (q-Clan). Let C = {At ∈ F2×2
q : t ∈ Fq} be a family of 2 × 2 matrices

over Fq. Then C is a called a q-clan if the quadratic forms

Qst(x, y) =
(
x y

)(
As − At

)(
x
y

)

for distinct s, t ∈ Fq are anisotropic, that is, Qst(x, y) = 0 if and only if x = y = 0 for
all distinct s, t ∈ Fq.

For each q-clan there is also a normalized q-clan obtainable via a normalization
process.

3.2.2 Definition (Normalized q-Clan). A q-clan C with A0 = 0, A1 = ( 1 1
0 c1 ) and

At =
(

at t
1
2

0 ct

)
for t ∈ Fq is called a normalized q-clan.

When writing a = c1, f(t) = at and g(t) = ct

a
, the following, although only noted in

[13], is a consequence of Theorem 3.1.11.

3.2.3 Theorem. Let a ∈ Fq and let f, g ∈ Fq[x]. Then

C =
{(

f(t) t
1
2

0 ag(t)

)
: t ∈ Fq

}

is a normalized q-clan if and only if

Tr
(
a(f(s) + f(t))(g(s) + g(t))

s+ t

)
= 1

holds for all distinct s, t ∈ Fq.

The next theorem is the reason that q-clans are interesting to us: A normalized q-clan
induces q + 1 o-polynomials, which induce a so-called herd of ovals.

3.2.4 Theorem. Let a ∈ Fq and let f, g ∈ Fq[x] with f(0) = g(0) = 0 and f(1) =
g(1) = 1. Then

Tr
(
a(f(s) + f(t))(g(s) + g(t))

s+ t

)
= 1
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3.2 Non-Monomial Families

holds if and only if Tr(a) = 1, g is an o-polynomial and the map

fs(x) = f(x) + asg(x) + s
1
2x

1
2

1 + as+ s
1
2

describes an o-polynomial for all distinct s ∈ Fq.

3.2.2 Subiaco and Adelaide Hyperovals
We begin by describing the Subiaco q-clan.

3.2.5 Theorem ([13, Theorem 5]). Let d ∈ Fq such that d2 +d+1 ̸= 0 and Tr
(

1
d

)
= 1.

Set

a = d2 + d5 + d
1
2

d(1 + d+ d2) ,

f(x) = d2(x4 + x) + d2(1 + d+ d2)(x3 + x2)
(x2 + dx+ 1)2 + x

1
2 ,

g(x) = d4x4 + d3(1 + d2 + d4)x3 + d3(1 + d2)x
(d2 + d5 + d

1
2 )(x2 + dx+ 1)2

+ d
1
2

d2 + d5 + d
1
2
x

1
2 .

Then

S = Sd =
{(

f(t) t
1
2

0 ag(t)

)
: t ∈ Fq

}

is a q-clan, called the Subiaco q-clan.

In [40] various properties and a different representation of the Subiaco q-clan are
shown, for example it is proven that different choices for d ∈ Fq lead to equivalent
q-clans by giving an explicit isomorphism in their Theorem 4.4. Furthermore, it is
established that for q = 2n with n ̸≡ 2 mod 4 only one hyperoval, up to equivalence,
arises from the Subiaco q-clan. This hyperoval may be described by the o-polynomial
given by the map

f(x) = d2(x4 + x) + d2(1 + d+ d2)(x3 + x2)
(x2 + dx+ 1)2 + x

1
2 ,

where again d ∈ Fq such that d2 +d+1 ̸= 0 and Tr
(

1
d

)
= 1. In [33, Corollary 14 and 17]

its stabilizer is worked out to be a cyclic group of order 2n for q ≥ 32.
If n ≡ 2 mod 4, the situation is a little more delicate, as there are two inequivalent

hyperovals arising from the Subiaco q-clan [40, Theorem 6.13]. Let ω ∈ Fq with ω2 +
ω+ 1 = 0. Such an element ω exists, since 2|n and thus F4 ≤ Fq. Then the polynomial
describing the map

f(x) = ω2x4 + ω2x

x4 + ω2x2 + 1 + x
1
2
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is an o-polynomial for the first kind [40, Eq. 53 or Theorem 6.6]. It has a stabilizer of
order 10n for q ≥ 64 [40, Theorem 6.13]. The other hyperoval is explicitly described in
[38, Eq. 50]. Let ζ be a primitive element of Fq2 and let λ = ζq−1. Then δ := λ + λ−1

is an element of Fq, since

δq = ζq2−q + ζ−q2+q = ζq2−1ζ1−q +
(

1
ζ

)q2−1 (1
ζ

)1−q

= λ−1 + λ = δ.

The polynomial given by the map

f(x) = δ2x4 + δ5x3 + δ2x2 + δ3x

x4 + δ2x2 + 1 +
(
x

δ

) 1
2

is an o-polynomial for the second kind, whose associated hyperoval has a stabilizer of
order 5n

2 for q ≥ 64 (see [40, Theorem 6.13] again).
The Adelaide q-clan has been described in [11].

3.2.6 Theorem ([11, Theorem 3.1]). Let q = 2n with n > 2 even and let β ∈ Fq2 \ {1}
with βq+1 = 1. Let further m ∈ N with m ≡ ± q−1

3 mod q + 1. Let T : Fq2 → Fq

be the trace map, that is, T (x) = x + xq for x ∈ Fq2. Define a ∈ Fq and functions
f, g : Fq → Fq by

a = T (βm)
T (β) + 1

T (βm) + 1,

f(t) = T (βm)(t+ 1)
T (β) + T (βt+ βq)m)

T (β)
(
t+ T (β)t 1

2 + 1
)m−1 + t

1
2 ,

ag(t) = T (βm)
T (β) t+ T ((β2t+ 1)m)

T (β)T (βm)
(
t+ T (β)t 1

2 + 1
)m−1 + t

1
2

T (βm) .

Then

C =
{(

f(t) t
1
2

0 ag(t)

)
: t ∈ Fq

}

is a q-clan, called the Adelaide q-clan.

Remarkably, when choosing other values for m such that different congruences are
satisfied, one can obtain other q-clans as well, including the Subiaco q-clan. In [12] it is
shown that there is, up to equivalence, only one Adelaide hyperoval, in particular it is
shown that the concrete values of β and m do not matter. One suitable o-polynomial
is given by the map t 7→ f(t) from Theorem 3.2.6. For q ≥ 64 the Adelaide hyperoval
has a cyclic stabilizer of order 2n [41, Corollary 7.3].
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3.2.3 Payne and Cherowitzo Hyperovals
The Payne hyperoval was found by Payne in 1985 [37], while investigating generalized
quadrangles, which are geometric spaces with quadrangles but no triangles (see, e.g.
[1]). We include a proof, as it is short and provides an explicit example to the usage of
q-clans. The original work is also hard to find. Furthermore, we also yield another proof
for the Segre o-monomial as a byproduct. We give the proof found in [7] or alternatively
in [39, Section 2.4].
3.2.7 Theorem (Payne Hyperovals). Let q = 2n with n odd. Then the polynomial over
Fq describing the map

f(x) = x
1
6 + x

3
6 + x

5
6

is an o-polynomial and its hyperoval is called the Payne hyperoval.

Proof. Letting a = 1, f(x) = x
1
6 and g(x) = x

5
6 , we prove that{(

t
1
6 t

1
2

0 t
5
6

)
: t ∈ Fq

}

is a q-clan. By Theorem 3.2.3 we need to show that

Tr
(

(s+ t)(s5 + t5)
s6 + t6

)
= 1, (3.14)

where we already substituted s 7→ s6 and t 7→ t6, for all distinct s, t ∈ Fq. Using the
relations

s3 + t3 = (s+ t)(s2 + st+ t2) and s5 + t5 = (s+ t)(s4 + s3t+ s2t2 + st3 + t4)

we have that

1 + (s+ t)(s5 + t5)
s6 + t6

= 1 + s4 + s3t+ s2t2 + st3 + t4

(s2 + st+ t2)2 = s3t+ st3

s4 + s2t2 + t2

= st

s2 + st+ t2
+
(

st

s2 + st+ t2

)2

has trace zero. Since n is odd and therefore Tr(1) = 1, Equation (3.14) must hold.
Then by Theorem 3.2.4 the polynomial describing the map

f1(x) = x
1
6 + x

5
6 + x

1
2

is an o-polynomial.

The Payne hyperoval has a cyclic stabilizer of order 2n for q ≥ 32 [47].
The Cherowitzo o-polynomial has long been conjectured to be an o-polynomial (see

for example [9, Section 4]) and has been finally proven to be one by Cherowitzo in 1998
in [10] using a generalization of q-clans called α-clans.
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3.2.8 Theorem ([10, Corollary 20]). Let q = 2n with n odd and let σ = 2n+1
2 , that is,

σ is the unique least positive residue mod q − 1 satisfying

σ2 ≡ 2 mod q − 1.

Then the polynomial

f(x) = xσ + xσ+2 + x3σ+4 = x2
n+1

2 + x2
n+1

2 +2 + x3·2
n+1

2 +4

is an o-polynomial.

When q ≥ 32, the associated hyperoval has a stabilizer of order n, consisting of only
the automorphisms of Fq [3, Corollary 4.4].

3.3 Explicit Formulas for the Known Monomial
Hyperovals

Our examinations in Chapter 2 culminated in Theorem 2.2.25, stating that for each
o-monomial, there are exactly five more o-equivalent o-monomials. Our goal is now to
give explicit formulas for those o-monomials o-equivalent to the known o-exponents we
dealt with in Section 3.1.

The strategy is generally as follows. We use computer calculated examples in small
fields to search for a general pattern in the binary expansion of the exponents. These
patterns are usually quick to spot and may be exploited to obtain a formula using the
geometric series. Note that this approach ensures that the formulas found require only
division in Z and always give the least positive residue modulo q−1. Obtaining formulas
for (1 − e)−1, when e is the exponent in question, requires some more work, as (1 − e)−1

is dependent on n mod 4 (and even on n mod 8 for Glynn2) as well. Afterwards, one
has to check by brute calculation that the formulas are indeed valid. Note that we only
need to calculate e−1 and (1 − e)−1, as the others follow easily then.

Finally, we would like to mention that some of these formulas are already known. For
the Glynn o-exponents Glynn himself gives the equivalent o-monomials in [18], although
only in terms of γ and σ and not as explicit as we do it here. In [5, Table 1] some
relations are given, sometimes explicit, sometimes as a series. Series representations
are also given in [14, Tables 1 and 2]. These references, however, were found only after
the following work was already done. Also, in [16, Section 2.2.2] explicit formulas for
1−e and e−1 of the Segre and translation o-exponents are given, which were the starting
point of the following work.

3.3.1 Segre Exponents
3.3.1 Theorem (Transformations of the Segre o-Exponent). Let n ∈ N be odd, that is,
n = 2l + 1 with l ∈ N. Then for e = 6, the Segre o-exponent, the following relations,
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taken mod 2n − 1 each, hold.

1 − e = 2n − 6,
1
e

= 5 · 2n−1 − 2
3 ,

e− 1
e

= 2n−1 + 2
3 ,

1
1 − e

=


2n−2
5 : n ≡ 1 mod 4,

3·2n−4
5 : n ≡ 3 mod 4,

e

e− 1 =


4·2n+2
5 : n ≡ 1 mod 4,

2·2n+4
5 : n ≡ 3 mod 4.

Proof. The first relation is clear, since 2n − 6 ≡ 1 − 6 mod q − 1. By consideration
of the binary expansions of e−1 for small values of l, one can extrapolate the following
form.

xl : = (110 10 10 . . . 10︸ ︷︷ ︸
l−1 10 blocks

)2

= 22l + 22l−1 +
l−2∑
j=0

21+2j = 22l + 22l−1 + 2
l−2∑
j=0

4j

= 22l + 22l−1 + 24l−1 − 1
3 = 9 · 22l−1

3 + 22l−1 − 2
3

= 10 · 22l−1 − 2
3 = 5 · 22l − 2

3 = 5 · 2n−1 − 2
3 .

We can verify this formula by computing

5 · 2n−1 − 2
3 · 6 = 5 · 2n − 4 ≡ 1 mod 2n − 1.

For the third relation we may resort to the second via

e− 1
e

= 1 − 1
e

≡ 2n − 5 · 2n−1 − 2
3 = 3 · 2n − 5 · 2n−1 + 2

3 = 2n−1 + 2
3 mod 2n − 1.

Next we consider the case n ≡ 1 mod 4 first, writing n = 4l̃+1 with l̃ ∈ N. Examples
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of (1 − e)−1 for small sizes of l lead to

xl̃ : = (1100 1100 . . . 1100︸ ︷︷ ︸
l̃−1 1100 blocks

110)2

= 2 + 22 +
l̃−2∑
j=0

25+4j + 26+4j = 2 + 22 + 25
l̃−2∑
j=0

16j + 26
l̃−2∑
j=0

16j

= 6 +
(
25 + 26

) 16l̃−1 − 1
15 = 6 + 3 · 25 24l̃−4 − 1

15 = 6 + 24l̃+1 − 25

5

= 24l̃+1 − 2
5 = 2n − 2

5 .

This is indeed the general form of (1 − e)−1, since

2n − 2
5 · (1 − 6) = 2 − 2n ≡ 2 − 1 = 1 mod 2n − 1.

Furthermore,

e

e− 1 = 1 − 1
1 − e

≡ 2n − 2n − 2
5 = 4 · 2n + 2

5 mod 2n − 1.

So, only the case n ≡ 3 mod 4 remains. We write n = 4l̃+ 3 with l̃ ∈ N0. If we look
at the binary expansions of (1 − e)−1 for small values of l again, we may suggest the
following form:

xl̃ : = (100 1100 1100 . . . 1100︸ ︷︷ ︸
l̃ 1100 blocks

)2

= 24l̃+2 +
l̃−1∑
j=0

22+4j + 23+4j = 24l̃+2 + 22
l̃−1∑
j=0

16j + 23
l̃−1∑
j=0

16j

= 24l̃+2 + 1216l̃ − 1
15 = 24l̃+2 + 4 · 24l̃ − 4

5 = 6 · 24l̃+2 − 4
5 = 3 · 2n − 4

5 .

This is indeed the general form, as

3 · 2n − 4
5 · (1 − 6) = 4 − 3 · 2n ≡ 4 − 3 = 1 mod 2n − 1.

Finally, we have

e

e− 1 = 1 − 1
1 − e

≡ 2n − 3 · 2n − 4
5 = 2 · 2n + 4

5 mod 2n − 1.

3.3.2 Glynn Exponents
3.3.2 Theorem (Transformations of the Glynn1 Exponent). Let n be odd, so n = 2l+1
with l ∈ N. Then for e = 3 ·2n+1

2 +4 = 3 ·2l+1 +4, the Glynn1 o-exponent, the following
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relations, each taken mod 2n − 1, hold.

1 − e = 2n − 3 · 2n+1
2 − 4,

1
e

= 3 · 2n−1
2 − 2,

e− 1
e

= 2n − 3 · 2n−1
2 + 2,

1
1 − e

=


2n−2

n+1
2

3 : n ≡ 1 mod 4,
2n − 2

n+1
2 +2
3 : n ≡ 3 mod 4,

e

e− 1 =


2·2n+2

n+1
2

3 : n ≡ 1 mod 4,
2

n+1
2 +2
3 : n ≡ 3 mod 4.

Proof. The first relation is clear, as 2n − 3 · 2n+1
2 − 4 ≡ 1 − 3 · 2n+1

2 − 4 mod 2n − 1. By
consideration of the binary expansions of e−1 for small values of l, one can extrapolate
the following form.

xl : = (10 1 1 . . . 1︸ ︷︷ ︸
l−1 1s

0)

= 2l+1 +
l−2∑
j=0

21+j = 2l+1 + 2
l−2∑
j=0

21+j

= 2l+1 + 2 · (2l−1 − 1) = 3 · 2l − 2 = 3 · 2n−1
2 − 2.

Direct computation verifies the validity of the formula:

xl · e =
(
3 · 2l − 2

)
·
(
3 · 2l+1 + 4

)
= 9 · 22l+1 + 12 · 2l − 6 · 2l+1 − 8

= 9 · 2n + 12 · 2l − 12 · 2l − 8 ≡ 9 − 8 = 1 mod 2n − 1.

Further, it follows that

e− 1
e

= 1 − 1
e

≡ 2n − 3 · 2n−1
2 + 2 mod 2n − 1.

First, we consider the case n ≡ 1 mod 4 by writing n = 4l̃+1 with n ∈ N. Examples
of (1 − e)−1 for small sizes of l̃ again lead to

xl̃ : = (10 10 . . . 10︸ ︷︷ ︸
l̃ 10 blocks

0 0 . . . 0︸ ︷︷ ︸
2l̃ 0s

)2

=
l̃−1∑
j=0

22l̃+1+2j = 22l̃+1 · 4l̃ − 1
3

= 24l̃+1 − 22l̃+1

3 = 2n − 2n+1
2

3 .
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That is indeed the general form of (1 − e)−1, because

(1 − e) · xl̃ ≡
(
1 − 3 · 22l̃+1 − 4

) 1 − 22l̃+1

3 =
(
−22l̃+1 − 1

) (
−22l̃−1 + 1

)
= 24l̃+2 − 1 ≡ 1 mod 2n − 1.

And we also have

e

e− 1 = 1 − 1
1 − e

≡ 2n − 2n − 2n+1
2

3 = 2 · 2n + 2n+1
2

3 mod 2n − 1.

So, only the case n ≡ 3 mod 4 remains and for that matter we write n = 4l̃+ 3 with
l̃ ∈ N0. By looking at the binary expansions of (1 − e)−1 for small values of l̃, we arrive
at the following conjectured form:

xl̃ : = (1 1 . . . 1︸ ︷︷ ︸
2l̃+1 1s

10 10 . . . 10︸ ︷︷ ︸
l̃+1 10 blocks

)

=
2l̃∑

j=0
22l̃+2+j +

l̃∑
j=0

21+2j = 2 · 4l̃+1 − 1
3 + 22l̃+2 ·

(
22l̃+1 − 1

)

= 22l̃+3 − 2 + 3 · 24l̃+3 − 3 · 22l̃+2

3

= 3 · 2n − 22l̃+2 − 2
3 = 2n − 2n+1

2 + 2
3 .

This is the general form of (1 − e)−1, which can be verified by calculating

(1 − e) · xl̃ ≡
(
1 − 3 · 22l̃+2 − 4

) 1 − 22l̃+2

3 =
(
−1 − 22l̃+2

) (
1 − 22l̃+2

)
= 24l̃+4 − 1 ≡ 1 mod 2n − 1.

Finally, we have

e

e− 1 = 1 − 1
1 − e

≡ 2n+1
2 + 2
3 mod 2n − 1.

For the Glynn2 o-exponent a distinction between n ≡ 1 mod 4 and n ≡ 3 mod 4 is
necessary.

3.3.3 Theorem (Transformations of the Glynn2 o-Exponent with n ≡ 1 mod 4). Let
n = 4l̃+1 with l̃ ∈ N. Then for e = 2n+1

2 +2 3n+1
4 = 22l̃+1 +23l̃+1, the Glynn2 o-exponent,
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the following relations, each taken mod 2n − 1, hold.

1 − e = 2n − 2 3n+1
4 − 2n+1

2 ,

1
e

= 2n − 2 3n+1
4 + 2n+1

2 − 2n−1
4 ,

e− 1
e

= 2 3n+1
4 − 2n+1

2 + 2n−1
4 ,

1
1 − e

=

2n − 2
3n+1

4 +2
n+3

4 +2
3 : n ≡ 1 mod 8,

2n−2
3n+1

4 −2
n+3

4
3 : n ≡ 5 mod 8,

e

e− 1 =


2

3n+1
4 +2

n+3
4 +2

3 : n ≡ 1 mod 8,
2·2n+2

3n+1
4 +2

n+3
4

3 : n ≡ 5 mod 8.

Proof. The first relation is clear, since 2n −2 3n+1
4 −2n+1

2 ≡ 1−2n+1
2 +2 3n+1

4 mod 2n −1.
Considering the binary expansion of e−1 for small values of l, one can conjecture the
following form for e−1:

xl̃ : = (1 . . . 1︸ ︷︷ ︸
l̃ 1s

0 . . . 0︸ ︷︷ ︸
l̃ 0s

1 . . . 1︸ ︷︷ ︸
l̃+1 1s

0 . . . 0︸ ︷︷ ︸
l̃ 0s

)

=
l̃−1∑
j=0

23l̃+1+j +
l̃∑

j=0
2l̃+j = 24l̃+1 − 23l̃+1 + 22l̃+1 − 2l̃

= 2n − 2 3n+1
4 + 2n+1

2 − 2n−1
4 .

This can be verified by calculating

e · xl̃ ≡ 22l̃+1
(
1 + 2l̃

) (
1 − 23l̃+1 + 22l̃+1 − 2l̃

)
= 22l̃+1

(
1 − 23l̃+1 + 22l̃+1 − 2l̃ + 22l̃ − 24l̃+1 + 23l̃+1 − 22l̃

)
≡ 22l̃+1

(
1 + 22l̃ − 1

)
= 24l̃+1 ≡ 1 mod 2n − 1.

Then we also have
e− 1
e

= 1 − 1
e

≡ 23l̃+1 − 22l̃+1 + 2l̃ = 2 3n+1
4 − 2n+1

2 + 2n−1
4 mod 2n − 1.

To obtain (1−e)−1 we first start with the case that n ≡ 1 mod 8 by writing n = 8l̂+1
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with l̂ ∈ N. Sample binary expansions yield the following presumed form.

xl̂ : = (1 . . . 1︸ ︷︷ ︸
2l̂+1 1s

01 01 . . . 01︸ ︷︷ ︸
2l̂−1 01 blocks

00 10 10 . . . 10︸ ︷︷ ︸
l̂ 10 blocks

)2

=
l̂−1∑
j=0

21+2j +
2l̂−2∑
j=0

22l̂+2+2j +
2l̂∑

j=0
26l̂+j

= 2 · 4l̂ − 1
3 + 22l̂+2 · 42l̂−1 − 1

3 + 26l̂ ·
(
22l̂+1 − 1

)
= 28l̂+1 + 1

3
(
22l̂+1 − 2 + 26l̂ − 22l̂+2 − 3 · 26l̂

)
= 2n − 26l̂+1 + 22l̂+1 + 2

3 = 2n − 2 3n+1
4 + 2n+3

4 + 2
3 .

Then we can calculate its validity as follows.

xl̂ · (1 − e) ≡ 3 − 26l̂+1 − 22l̂+1 − 2
3

(
1 − 26l̂+1 − 24l̂+1

)
= −1

3
(
22l̂+1 + 22l̂+1 − 1

) (
1 − 26l̂+1 − 24l̂+1

)
= −1

3
(
26l̂+1 − 212l̂+2 − 210l̂+2 + 22l̂+1 − 28l̂+2−26l̂+2 − 1 + 26l̂+1 + 24l̂+1

)
≡ −1

3
(
−24l̂+1 − 22l̂+1 + 22l̂+1 − 2 − 1 + 24l̂+1

)
= 1 mod 2n − 1.

Furthermore, we have

e

e− 1 = 1 − 1
1 − e

≡ 2 3n+1
4 + 2n+3

4 + 2
3 mod 2n − 1.

Now, only the case n ≡ 5 mod 8 remains. We write n = 8l̂ + 5 with l̂ ∈ N0.
Considerations of the binary expansions of (1 − e)−1 for small values of l̂ point to the
following conjectured form.

xl̂ : = (10 10 . . . 10︸ ︷︷ ︸
l̂ 10 blocks

01 01 . . . 01︸ ︷︷ ︸
2l̂+1 01 blocks

0 . . . 0︸ ︷︷ ︸
2l̂+2 0s

)2

=
2l̂∑

j=0
22l̂+2+2j +

l̂−1∑
j=0

26l̂+5+2j = 22l̂+2 · 42l̂+1 − 1
3 + 26l̂+5 · 4l̂ − 1

3

= 26l̂+4 − 22l̂+2 + 28l̂+5 − 26l̂+5

3

= 28l̂+5 − 26l̂+4 − 22l̂+2

3 = 2n − 2 3n+1
4 − 2n+3

4

3 .
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That is the general form of (1 − e)−1, as

xl̂ · (1 − e) ≡ 1
3
(
1 − 26l̂+4 − 22l̂+2

) (
1 − 26l̂+4 − 24l̂+3

)
= 1

3
(
1−26l̂+4 − 24l̂+3−26l̂+4 + 212l̂+8 + 210l̂+7 − 22l̂+2 + 28l̂+6 + 26l̂+5

)
≡ 1

3
(
1 − 24l̂+3 + 24l̂+3 + 22l̂+2 − 22l̂+2 + 2

)
= 1 mod 2n − 1.

We also have

e

e− 1 = 1 − 1
1 − e

≡ 2 · 2n + 2 3n+1
4 + 2n+3

4

3 mod 2n − 1.

3.3.4 Theorem (Transformations of the Glynn2 o-Exponent with n ≡ 3 mod 4). Let
n = 4l̃+3 with l̃ ∈ N0. Then for e = 2n+1

2 +2n+1
4 = 22l̃+2 +2l̃+1, the Glynn2 o-exponent,

the following relations, each taken mod 2n − 1, hold.

1 − e = 2n − 2n+1
2 − 2n+1

4 ,

1
e

= 2n − 2 3n−1
4 + 2n+1

2 − 2n+1
4 ,

e− 1
e

= 2 3n−1
4 − 2n+1

2 + 2n+1
4 ,

1
1 − e

=

2n − 2
3n+3

4 +2
n+1

4 +2
3 : n ≡ 3 mod 8,

2n−2
3n+3

4 −2
n+1

4
3 : n ≡ 7 mod 8,

e

e− 1 =


2

3n+3
4 +2

n+1
4 +2

3 : n ≡ 3 mod 8,
2·2n+2

3n+3
4 +2

n+1
4

3 : n ≡ 7 mod 8.

Proof. The first relation is clear, as 2n − 2n+1
2 − 2n+1

4 ≡ 1 − 2n+1
2 − 2n+1

4 mod 2n − 1.
For the second relation, the binary expansions of e−1 for small values of l̃ suggest the
following general form.

xl̃ : = (1 . . . 1︸ ︷︷ ︸
l̃+1 1s

0 . . . 0︸ ︷︷ ︸
l̃ 0s

1 . . . 1︸ ︷︷ ︸
l̃+1 1s

0 . . . 0︸ ︷︷ ︸
l̃+1 0s

)2

=
l̃∑

j=0
2l̃+1+j +

l̃∑
j=0

23l̃+2+j = 2l̃+1
l̃∑

j=0
2j + 23l̃+2

l̃∑
j=0

2j

= 24l̃+3 − 23l̃+2 + 22l̃+2 − 2l̃+1 = 2n − 2 3n−1
4 + 2n+1

2 − 2n+1
4 .
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This is indeed the general form, as the following computation shows.

xl̃ · e ≡
(
1 − 23l̃+2 + 22l̃+2 − 2l̃+1

) (
22l̃+2 + 2l̃+1

)
= 22l̃+2 + 2l̃+1 − 25l̃+4 − 24l̃+3 + 24l̃+4 + 23l̃+3 − 23l̃+3 − 22l̃+2

≡ 2l̃+1 − 2l̃+1 − 1 + 2 = 1 mod 2n − 1.

Thus we also have
e− 1
e

= 1 − 1
e

≡ 2 3n−1
4 − 2n+1

2 + 2n+1
4 mod 2n − 1.

To obtain (1−e)−1, we consider the case n ≡ 3 mod 8 first by writing n = 8l̂+3 with
l̂ ∈ N0. Sample binary expansions for small values of l̂ indicate the following general
form.

xl̂ : = (1 . . . 1︸ ︷︷ ︸
2l̂+1 1s

01 . . . 01︸ ︷︷ ︸
2l̂ 01 blocks

00 10 . . . 10︸ ︷︷ ︸
l̂ 10 blocks

)2

=
l̂−1∑
j=0

21+2j +
2l̂−1∑
j=0

22l̂+2+2j +
2l̂∑

j=0
26l̂+2+j

= 2 · 4l̂ − 1
3 + 22l̂+2 42l̂ − 1

3 + 26l̂+2 ·
(
22l̂+1 − 1

)
= 28l̂+3 + 1

3
(
22l̂+1 − 2 + 26l̂+2 − 22l̂+2 − 3 · 26l̂+2

)
= 28l̂+3 − 26l̂+3 + 22l̂+1 + 2

3 = 2n − 2 3n+3
4 + 2n+1

4 + 2
3 .

This is indeed the general form of (1 − e)−1, since we have

(1 − e) · xl̂ ≡
(
1 − 24l̂+2 − 22l̂+1

) 1 − 26l̂+3 − 22l̂+1

3
= 1

3
(
1 − 26l̂+3 − 22l̂+1 − 24l̂+2 + 210l̂+5 + 26l̂+3 − 22l̂+1 + 28l̂+4 + 24l̂+2

)
≡ 1

3(1 + 2) = 1 mod 2n − 1.

Therefore we also have

e

e− 1 = 1 − 1
1 − e

≡ 2 3n+3
4 + 2n+1

4 + 2
3 mod 2n − 1.

Now, only the case n ≡ 7 mod 8 remains to be considered. We write n = 8l̂+7 with
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l̂ ∈ N0 and binary expansions of (1 − e)−1 for small l̂ reveal the following form.

xl̂ : = (10 10 . . . 10︸ ︷︷ ︸
l̂ 10 blocks

01 01 . . . 01︸ ︷︷ ︸
2l̂+2 01 blocks

0 0 . . . 0︸ ︷︷ ︸
2l̂+2 0s

)2

=
2l̂+1∑
j=0

22l̂+2+2j +
l̂−1∑
j=0

26l̂+7+2j

= 22l̂+2 42l̂+2 − 1
3 + 26l̂+7 4l̂ − 1

3

= 28l̂+7 − 26l̂+7 + 26l̂+6 − 22l̂+2

3

= 28l̂+7 − 26l̂+6 − 22l̂+2

3 = 2n − 2 3n+3
4 − 2n+1

4

3 .

That is indeed the general form, as we have

(1 − e) · xl̂ ≡ 1
3
(
1 − 24l̂+4 − 22l̂+2

) (
1 − 26l̂+6 − 22l̂+2

)
= 1

3
(
1 − 26l̂+6 − 22l̂+2 − 24l̂+4 + 210l̂+10 + 26l̂+6 − 22l̂+2 + 28l̂+8 + 24l̂+4

)
≡ 1

3 (1 + 2) = 1 mod 2n − 1.

Finally, we have

e

e− 1 = 1 − 1
1 − e

≡ 2 · 2n + 2 3n+3
4 + 2n+1

4

3 mod 2n − 1.

3.3.3 Translation Exponents
Here the situation is somewhat trickier, at least for the (1 − e)−1 case. The reason is
that if e = 2h with gcd(n, h) = 1, the least positive residue of (1 − e)−1 mod 2n − 1
carries a lot of information about h−1 mod n as well. We begin with some general
observations about (1 − e)−1.
3.3.5 Lemma. Let n ∈ N and h ∈ N with gcd(n, h) = 1. Then for e = 2h there exists
a unique number a(n, h) ∈ {1, . . . , 2h − 2} such that

xn,h := a(n, h) · 2n − (a(n, h) + 1)
2h − 1 ∈ {1, . . . , 2n − 2}

is the least positive residue of (1 − e)−1 mod 2n − 1.

Proof. We first show that there is a number a(n, h) such that a(n, h) · 2n − (a(n, h) + 1)
is divisible by 2h − 1, or equivalently, that a(n, h) · 2n − (a(n, h) + 1) ≡ 0 mod 2h − 1
holds. Since gcd(n, h) = 1 implies gcd(2n − 1, 2h − 1) = 1, we have that

a(n, h) ≡ (2n − 1)−1 mod 2h − 1
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has a unique solution a(n, h) ∈ {1, . . . , 2h − 2}.
That (1 − e)−1 is given by xn,h is immediate from

(
1 − 2h

) a(n, h) · 2n − (a(n, h) + 1)
2h − 1 ≡ a(n, h) + 1 − a(n, h) = 1 mod 2n − 1.

And finally, we have

0 < a(n, h) · 2n − (a(n, h) + 1)
2h − 1 = a(n, h) · (2n − 1) − 1

2h − 1 < 2n − 1 − 1
2h − 1 < 2n − 1

and thus that xn,h is the least positive residue.
3.3.6 Lemma (Special Cases). Let n, h ∈ N with gcd(n, h) = 1. Then for a(n, h) from
Lemma 3.3.5 the following statements hold.

1. a(n, h) = 1 if n ≡ 1 mod h.

2. a(n, h) = 2h − 3 if n ≡ −1 mod h.

3. a(n, h) = 2·2h−1
3 if n ≡ 2 mod h.

Proof. We verify by computation that a(n, h) · 2n − (a(n, h) + 1) is divisible by 2h − 1
in each case.

1. We have n = l · h+ 1 with l ∈ N. Then we have

2l·h+1 − 2 ≡ 2 ·
(
2h
)l

− 2 ≡ 2 − 2 = 0 mod 2h − 1.

2. We have n = l · h− 1 with l ∈ N and thus(
2h − 3

)
2l·h−1 − 2h + 2 ≡ (−2) · 2l·h−1 − 1 + 2 ≡ −1 − 1 + 2 = 0 mod 2h − 1.

3. We have n = l · h + 2 with l ∈ N and h must be odd, since gcd(n, h) = 1. Then
2h+1 − 1 is divisible by 3, since 2h+1 − 1 ≡ (−1)h+1 − 1 ≡ 1 − 1 = 0 mod 3.
Therefore,

2 · 2h−1 − 1
3 · 2h −

(
2 · 2h − 1

3 + 1
)

≡ 2 − 1
3 · 22 − 2 − 1

3 − 1

≡ 1 − 1 ≡ 0 mod 2h − 1.

One way of calculating a(n, h) could be via recursion.
3.3.7 Lemma. Let n, h ∈ N with gcd(n, h) = 1 and n ≡ t mod h. Then for a(n, h)
from Lemma 3.3.5

a(n, h) ≡
(
2t − 1

)−1
≡ 2h − 1 − a(h, t) · 2h − (a(h, t) + 1)

2t − 1 mod 2h − 1

holds.
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Proof. The condition a(n, h)2n − (a(n, h) + 1) ≡ 0 mod 2h − 1 implies

a(n, h) ≡ (2n − 1)−1 mod 2h − 1,

so it is the same problem (with a flipped sign and smaller modulus).

Very conveniently for us, Kyureghyan and Suder [27] give a more explicit result.

3.3.8 Theorem ([27, Theorem 3.12]). Let n, h ∈ N with gcd(n, h) = 1 and let h−1
n be

least positive residue of h−1 mod n. Then

(1 − 2h)−1 ≡ 2n − 1 −
h−1

n −1∑
i=0

2hi mod n mod 2n − 1

holds.

3.3.9 Theorem (Transformations of the Translation o-Exponents). Let n, h ∈ N with
gcd(n, h) = 1 and let h−1

n ∈ {1, . . . , n − 1} be the least positive residue of h−1 mod n.
Then for the translation o-exponent e = 2h the following relations, taken mod 2n − 1
each, hold.

1 − e = 2n − 2h

e−1 = 2n−h

e− 1
e

= 2n − 2n−h

(1 − e)−1 = 2n − 1 −
h−1

n −1∑
i=0

2hi mod n

e

e− 1 = 1 +
h−1

n −1∑
i=0

2hi mod n.

Proof. The first relation is clear, since 2n −2h ≡ 1−2h mod 2n −1, the second relation
is also clear, as 2n−h ·2h = 2n ≡ 1 mod 2n −1, and the third follows from e−1

e
= 1−e−1.

Theorem 3.3.8 yields the fourth relation and the last one follows from e
e−1 = 1− 1

1−e
.
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4 Application: 2-to-1 Binomials
This last chapter deals with an application of o-polynomials: They are naturally related
to the 2-to-1 polynomials and thus allow constructing 2-to-1 polynomials.

This connection stems from the property that no three points of the corresponding
hyperoval are collinear, meaning that we can generalize it to ovals in odd characteristic
as well, allowing for similar investigations in that case in the second section.

As we deal with both even and odd characteristic in this chapter, we carefully specify
whether q is an odd or even prime power when necessary.

A central tool in this chapter is examining specific lines of PG(2, q). For that purpose,
recall the lines of PG(2, q) and their representations:

• la,b =
〈( a

b
1

)〉⊥
for a, b ∈ Fq,

• la =
〈( a

1
0

)〉⊥
for a ∈ Fq, and

• l∞ =
〈( 1

0
0

)〉⊥
.

4.1 Even Characteristic
The goal of this section is to find many different 2-to-1 binomials using o-monomials.
To that matter, we first relate o-polynomials to a family of 2-to-1 polynomials, show
that one 2-to-1 binomial already induces such a family of 2-to-1 binomials and thus an
o-monomial and finally apply this to the results of Section 3.3.

4.1.1 The 2-to-1 Characterization
In this subsection we give a characterization of o-polynomials using 2-to-1 polynomials,
employing mostly combinatorial arguments.

4.1.1 Definition. Let q be even. The polynomial f ∈ Fq[x] is called 2-to-1 if every
element of Fq has either zero or two preimages under f .

An equivalent formulation is that the equation f(x) = a has either zero or two solu-
tions for each a ∈ Fq. In relation to this property we have the following characterization:
A polynomial f is an o-polynomial if and only if the polynomial f(x) + bx is 2-to-1 for
all b ∈ Fq.

The key idea is that the solutions of the equation

f(x) + bx = a
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4.1 Even Characteristic

correspond to the points of H(f) on the lines la,b of PG(2, q). Intuitively, f(x) + bx
being 2-to-1 for all b ∈ F∗

q is equivalent to on most lines being exactly zero or two points.
To make the argument rigorous we need a converse statement to Lemma 2.1.3, char-

acterizing hyperovals by the number of their external lines. Before proving this we start
by giving a counting lemma, which continues to be useful in Subsection 4.2.2 as well.
This argumentation is due to Maschietti [29].

4.1.2 Lemma. Let q be a prime power, S be a set of m points in PG(2, q) and k be
the maximal number of collinear points from S. Further, let τi be the number of lines
containing exactly i points for i = 0, 1, . . . , k. Then the following equalities hold.

k∑
i=0

τi = q2 + q + 1, (4.1)

k∑
i=1

iτi = m(q + 1), (4.2)

k∑
i=2

(i− 1)iτi = m(m− 1). (4.3)

Further, for the tangents of S we have

τ1 = m(q + 1) −m(m− 1) +
k∑

i=2
(i2 − 2i)τi. (4.4)

Proof. Equation (4.1) is obtained by counting every line of PG(2, q) exactly once.
Let us introduce some more notation. Let Ti be the set of lines containing exactly i

points of S. Then |Ti| = τi.
For Equation (4.2) we count the pairs (l, P ), where P ∈ S and l is a line containing

the point P . On the one hand, for l ∈ Ti, there are i different points on l, so we can
count the number of pairs to be ∑k

i=1 iτi. On the other hand, each point of S lies on
exactly q + 1 lines, so we obtain m(q + 1) pairs.

For Equation (4.3) we count the pairs (l, P1, P2), where P1 and P2 are distinct points
of S and l is a line containing both points. On a line l ∈ Ti we can choose two points
from the i points available, so we have ∑k

i=2 i(i − 1)τi pairs overall. But we may also
choose two distinct points P1 and P2 from S, fixing the unique line connecting them.
Thus we obtain m(m− 1) pairs.

Finally, subtracting (4.3) from (4.2) yields

k∑
i=1

iτi −
k∑

i=2
(i− 1)iτi = τ1 +

k∑
i=2

(−i2 + 2i)τi = m(q + 1) −m(m− 1)

and thus Equation (4.4).

4.1.3 Theorem. A set H of q+ 2 points of PG(2, q), q even, is a hyperoval if and only
if there are τ0 = q(q−1)

2 external lines to H.
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4 Application: 2-to-1 Binomials

Proof. The if part has already been covered in Lemma 2.1.3, so let H be a (q + 2)-set
of points of PG(2, q) with exactly τ0 = q(q−1)

2 external lines. Reusing the notation from
Lemma 4.1.2 and applying it with m = q + 2 yields

k∑
i=1

τi = q2 + q + 1, (4.5)

k∑
i=2

i(i− 1)τi = (q + 2)(q + 1), (4.6)

τ1 =
k∑

i=2
(i2 − 2i)τi. (4.7)

Substituting τ0 and τ1 into (4.5), one obtains

q(q − 1)
2 +

k∑
i=2

(i2 − 2i)τi +
k∑

i=2
τi = q2 + q + 1

and thus
k∑

i=2
(2i2 − 4i+ 2)τi = q2 + 3q + 2 = (q + 2)(q + 1). (4.8)

Finally, by subtracting Equation (4.6) from (4.8) we get

k∑
i=3

(i2 − 3i+ 2)τi = 0,

as 22 − 3 · 2 + 2 = 0. Since i2 − 3i + 2 > 0 for i ≥ 3, we have τi = 0 for i ≥ 3. So, no
three points of H are collinear and H is therefore a hyperoval.

We are now able to prove the already mentioned characterization.
4.1.4 Theorem. Let q be even. The polynomial f ∈ Fq[x] is an o-polynomial if and
only if the polynomial f(x) + bx is 2-to-1 for all b ∈ F∗

q.
Proof. Let f be an o-polynomial and consider the lines la,b for a ∈ Fq and b ∈ F∗

q. Then
(0, 1, 0), (0, 0, 1) /∈ la,b. A point (1, t, f(t)) ∈ H(f) with t ∈ Fq is on la,b if and only if

 1
t

f(t)

 ∈
〈ab

1

〉
⊥

,

that is, if and only if

a+ bt+ f(t) = 0.

Since H(f) is a hyperoval, this equation has exactly zero or two solutions for each
a ∈ Fq and b ∈ F∗

q, so the polynomials f(x) + bx are 2-to-1 for all b ∈ F∗
q.
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4.1 Even Characteristic

Now let f ∈ Fq[x] so that the polynomial f(x) + bx is 2-to-1 for each b ∈ F∗
q. Then

H(f) is a (q + 2)-set, so we may apply Theorem 4.1.3. We have (0, 0, 1) ∈ l∞, la and
(0, 1, 0) ∈ la,0. Consider a fixed b ∈ F∗

q. Since f(x) + bx is 2-to-1, there are exactly q
2

values for a ∈ Fq such that

a+ bx+ f(x) = 0

has no solution in Fq. For those values of a the line la,b is an external line. All in all, we
obtain q(q−1)

2 external lines. Therefore H(f) is a hyperoval and f an o-polynomial.

4.1.2 Equivalence of 2-to-1 Binomials and o-Monomials
In this subsection we show that every 2-to-1 binomial may be traced back to an o-
monomial. The important idea is that the property of xe + bxd being 2-to-1 for some
b ∈ F∗

q is already strong enough to imply that xe + bxd is 2-to-1 for all b ∈ F∗
q. Once this

is established, we may conclude using the characterization from Theorem 4.1.3 proved
in the last subsection. This subsection follows very closely [25].

4.1.5 Lemma. Let q be even, 0 < e ̸= d, b ∈ F∗
q and assume that f(x) = xe+bxd ∈ Fq[x]

is 2-to-1. Then gcd(e− d, q − 1) = 1.

Proof. We have f(0) = 0, so there is exactly one more element t ∈ F∗
q satisfying f(t) = 0.

So, consider

f(t) = td
(
te−d + b

) != 0.

This equation has either one or 1 + gcd(e− d, q − 1) solutions, so gcd(e− d, q − 1) = 1
follows.

4.1.6 Theorem. Let q be even, 0 < e ̸= d, b ∈ F∗
q and assume that fb(x) = xe + bxd ∈

Fq[x] is 2-to-1. Then gcd(e, q − 1) = gcd(d, q − 1) = 1 and fb′(x) = xe + b′xd is 2-to-1
for all b′ ∈ F∗

q.

Proof. Take b′ ∈ F∗
q. The goal is to show that fb′(x) is 2-to-1.

Firstly, because fb(x) is 2-to-1, by Lemma 4.1.5 we have gcd(e− d, q − 1) = 1. Since
we have

fb′(x) = xe
(
1 + b′xd−e

)
it follows that fb′(x) = 0 if and only if x = 0 or x is the unique nonzero solution of
b′xd−e = 1, so 0 has exactly two preimages under fb′ . Thus we will assume x ̸= 0 and
b′xd−e ̸= 1 from now on.

Consider for a fixed x ∈ Fq with x ̸= 0 and b′xd−e ̸= 1 the equation

fb′(x) = fb′(αx) (4.9)

in α ∈ F∗
q. Then the polynomial fb′(x) is 2-to-1 if and only if Equation (4.9) has exactly

two solutions: α = 1 and one other solution α ∈ Fq \ {0, 1}. Since x ̸= 0, by dividing
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4 Application: 2-to-1 Binomials

through xd Equation (4.9) is seen to be equivalent to

1 + b′xd−e != αe
(
1 + b′αd−exd−e

)
= αe + b′αdxd−e

and thus equivalent to

1 + αe = (1 + αd)b′xd−e. (4.10)

Next we show gcd(d, q−1) = gcd(e, q−1) = 1. For a contradiction, assume gcd(e, q−
1) > 1 for now. Then there is an element α ∈ Fq \ {0, 1} such that the left-hand side of
(4.10) vanishes. Thus we also have 1+αd = 0, since b′xd−e ̸= 0 for x ̸= 0. In particular,
we have αe = 1 and αd = 1, so αe−d = 1 as well. Because gcd(e − d, q − 1) = 1, this
is only possible for α = 1, hence gcd(e, q − 1) = 1. Then αd = 1 if and only if α = 1,
since the left-hand side vanishes only for α = 1. Therefore, α 7→ αd is a permutation of
Fq and we have gcd(d, q − 1) = 1 as well.

Now, if α ̸= 1, then αe ̸= 1, so by dividing Equation (4.10) by αd + 1 we obtain the
following: The polynomial fb′(x) is 2-to-1 if and only if for each fixed x ∈ Fq with x ̸= 0
and b′xd−e ̸= 1 the equation

b′xd−e = αe + 1
αd + 1 (4.11)

has exactly one solution α ∈ Fq \ {0, 1}. Defining T :=
{

αe+1
αd+1 : α ∈ Fq \ {0, 1}

}
, this is

equivalent to T = Fq \ {0, 1}, since gcd(e− d, q − 1) = 1.
Fortunately, T does not depend on b′, so we may take b′ = b to determine T com-

pletely. As fb(x) is 2-to-1 by assumption, T = Fq \ {0, 1} follows. We conclude that
fb′(x) is 2-to-1 for all b′ ∈ F∗

q.

4.1.7 Corollary. For 0 < e ̸= d the following three statements are equivalent:

1. The polynomial fb(x) = xe + bxd is 2-to-1 for a value b ∈ F∗
q.

2. The polynomial fb(x) = xe + bxd is 2-to-1 for all b ∈ F∗
q.

3. The monomial x e
d is an o-monomial, provided gcd(d, q − 1) = 1.

Proof. The equivalence of the first two statements is immediate from Theorem 4.1.6.
If fb(x) is 2-to-1 for all b ∈ Fq, then by Theorem 4.1.6 gcd(d, q − 1) = 1. Therefore, we
can substitute x 7→ x

1
d and obtain that gb(x) = x

e
d + bx is 2-to-1 for all b ∈ F∗

q. By the
characterization of Theorem 4.1.4 this is equivalent to x e

d being an o-monomial.
Conversely, x e

d being an o-monomial implies that gb(x) = x
e
d + bx is 2-to-1 for all

b ∈ F∗
q. The reverse substitution x 7→ xd now yields fb(x) = xe + bxd being 2-to-1 for

all b ∈ F∗
q.

4.1.3 2-to-1 Binomials from o-Monomials
To obtain many different families of 2-to-1 binomials we now apply Corollary 4.1.7 to
the explicit formulas given in Section 3.3.
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4.1 Even Characteristic

4.1.8 Theorem (2-to-1 Binomials Induced by Segre o-Monomials). Let n ∈ N be odd
and let e = 6 be the Segre o-exponent. Then the following binomials are 2-to-1 for all
b ∈ F∗

q.

o-exponent induced 2-to-1 binomials

e x6 + bx

1 − e x2n−6 + bx

1
e

x
5·2n−1−2

3 + bx

e−1
e

x
2n−1+2

3 + bx

1
1−e

x
2n−2

5 + bx if n ≡ 1 mod 4

x
3·2n−4

5 + bx if n ≡ 3 mod 4

e
e−1

x
4·2n+2

5 + bx if n ≡ 1 mod 4

x
2·2n+4

5 + bx if n ≡ 3 mod 4

4.1.9 Theorem (2-to-1 Binomials Induced by Glynn1 o-Monomials). Let n ∈ N be odd
and let e = 3 · 2n+1

2 + 4 be the Glynn1 o-exponent. Then the following binomials are
2-to-1 for all b ∈ F∗

q.

o-exponent induced 2-to-1 binomials

e x3·2
n+1

2 +4 + bx

1 − e x2n−3·2
n+1

2 −4 + bx

1
e

x3·2
n−1

2 −2 + bx

e−1
e

x2n−3·2
n−1

2 +2 + bx

1
1−e

x
2n−2

n+1
2

3 + bx if n ≡ 1 mod 4

x2n− 2
n+1

2 +2
3 + bx if n ≡ 3 mod 4

e
e−1

x
2·2n+2

n+1
2

3 + bx if n ≡ 1 mod 4

x
2

n+1
2 +2
3 + bx if n ≡ 3 mod 4

4.1.10 Theorem (2-to-1 Binomials Induced by Glynn2 o-Monomials). Let n be odd

73



4 Application: 2-to-1 Binomials

and e be the Glynn2 o-exponent. Then the following binomials are 2-to-1 for all b ∈ F∗
q.

o-exponent induced 2-to-1 binomials

e
x2

n+1
2 +2

3n+1
4 + bx if n ≡ 1 mod 4

x2
n+1

2 +2
n+1

4 + bx if n ≡ 3 mod 4

1 − e
x2n−2

3n+1
4 −2

n+1
2 + bx if n ≡ 1 mod 4

x2n−2
n+1

2 −2
n+1

4 + bx if n ≡ 3 mod 4

1
e

x2n−2
3n+1

4 +2
n+1

2 −2
n−1

4 + bx if n ≡ 1 mod 4

x2n−2
3n−1

4 +2
n+1

2 −2
n+1

4 + bx if n ≡ 3 mod 4

e−1
e

x2
3n+1

4 −2
n+1

2 +2
n−1

4 + bx if n ≡ 1 mod 4

x2
3n−1

4 −2
n+1

2 +2
n+1

4 + bx if n ≡ 3 mod 4

1
1−e

x2n− 2
3n+1

4 +2
n+3

4 +2
3 + bx if n ≡ 1 mod 8

x2n− 2
3n+3

4 +2
n+1

4 +2
3 + bx if n ≡ 3 mod 8

x
2n−2

3n+1
4 −2

n+3
4

3 + bx if n ≡ 5 mod 8

x
2n−2

3n+3
4 −2

n+1
4

3 + bx if n ≡ 7 mod 8

e
e−1

x
2

3n+1
4 +2

n+3
4 +2

3 + bx if n ≡ 1 mod 8

x
2

3n+3
4 +2

n+1
4 +2

3 + bx if n ≡ 3 mod 8

x
2·2n+2

3n+1
4 +2

n+3
4

3 + bx if n ≡ 5 mod 8

x
2·2n+2

3n+3
4 +2

n+1
4

3 + bx if n ≡ 7 mod 8

4.1.11 Theorem (2-to-1 Binomials Induced by Translation o-Monomials). Let n, h ∈ N
with gcd(n, h) = 1 and let h−1

n ∈ {1, . . . , n − 1} be the least positive residue of h−1

mod n. Then for the translation o-exponent e = 2h, setting t = ∑h−1
n −1

i=0 2hi mod n, the
following binomials are 2-to-1 for all b ∈ F∗

q.
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4.2 Odd Characteristic

o-exponent induced 2-to-1 binomials

e x2h + bx

1 − e x2n−2h + bx

1
e

x2n−h + bx

e−1
e

x2n−2n−h + bx

1
1−e

x2n−1−t + bx

e
e−1 x1+t + bx

4.2 Odd Characteristic
The previous section deals with 2-to-1 binomials in even characteristic. Now we transfer
the arguments and results to the case of odd characteristic. Although by Theorem 2.1.6
there are no hyperovals in PG(2, q) for q odd, the existing ovals can still be linked to
2-to-1 polynomials just as it is done in the case of even characteristic. This is done in
the first subsection.

The greatest difference is that no odd characteristic version of Lemma 4.1.5 holds.
Consequently, a single 2-to-1 binomial xe + bxd does not yet define an oval, so we use
the additional assumption that the binomial xe + bxd is 2-to-1 for all b ∈ F∗

q. This
situation is investigated in the second subsection.

An advantage of working in odd characteristic is that ovals are very well understood
using Segre’s Theorem. Using this powerful tool we conclude this thesis by obtaining a
complete classification of those 2-to-1 binomials.

Finally, we would like to mention that this section was motivated mainly by research
group meetings held by Professor Gohar Kyureghyan in Rostock about 2-to-1 binomials.
The idea that it might be worthwhile to consider the statements of what is now Theorem
4.2.8 and Theorem 4.2.11 originated there, after the statement of Lemma 4.2.7 was
established. Considerable contributions were made by Lucas Krompholz, especially
regarding the definition, what kind of 2-to-1 binomials should be studied, and which
properties they possess.

4.2.1 Ovals in Odd Characteristic
An oval in odd characteristic has exactly q + 1 points and in this subsection we obtain
an algebraic description of an oval analogous to Theorem 2.1.15, while the algebraic
condition is in the spirit of the characterization of Theorem 4.1.4.

When the characteristic is odd, we also have an odd number of elements in Fq, which
has to be accounted for when considering the 2-to-1 property.
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4 Application: 2-to-1 Binomials

4.2.1 Definition. Let q be odd. A polynomial f ∈ Fq[x] is 2-to-1, if |f−1({t})| ∈
{0, 1, 2} for all t ∈ Fq and if there is exactly one element t ∈ Fq with |f−1({t})| = 1.

First we justify why ovals may be assumed to be of a specific form, similar to the
assumption that a hyperoval contains the fundamental quadrangle. Afterwards, the
main characterization is proved.
4.2.2 Lemma. Let q be odd and let O be an oval of PG(2, q). Then there is an
equivalent oval O′ of PG(2, q) containing the points (1, 0, 0), (1, 1, 1), (0, 0, 1) and no
other points from l∞.

Proof. By Lemma 2.1.3 we know that O has q + 1 tangents. Fix l to be one of those
and let P ∈ O be the tangent point.

Let S and T be other points of O. Further, let Q be a point of l \ {P} not contained
in S ∨ T . Since q ≥ 3 it is always possible to select such a point. Finally, let Q′ ∈
l∞ \ {(0, 0, 1)}.

By construction, the points P,Q, S and T constitute a frame. Therefore, we can
define a projectivity PG(2, q) → PG(2, q) by setting

• φ(P ) = (0, 0, 1),

• φ(Q) = Q′,

• φ(S) = (1, 0, 0), and

• φ(T ) = (1, 1, 1).
Then φO is an oval containing the three prescribed points. Additionally, φ preserves
incidence relations, so φl = l∞ and l∞ is a tangent of O′ := φO.
4.2.3 Theorem. Let q be odd and let O be an oval of PG(2, q) containing the points
(1, 0, 0), (1, 1, 1) and (0, 0, 1), which has l∞ as a tangent. Then O may be represented
via a polynomial f ∈ Fq[x] as

O = Oo(f) := {(1, s, f(s)) : s ∈ Fq} ∪ {(0, 0, 1)},

where f satisfies the conditions

(i) f(0) = 0 and f(1) = 1 and

(ii) the polynomial f(x) + bx is 2-to-1 for every b ∈ Fq.

Conversely, every such polynomial f ∈ Fq[x] defines an oval Oo(f).
Proof. Firstly, if l∞ is a tangent of O, then every point of O besides (0, 0, 1) must have
a non-vanishing first coordinate. The q remaining points are thus of the form (1, ci, di)
with ci, di ∈ Fq for i = 1, . . . , q. Assume now for a contradiction that ci = cj for a pair
(i, j) with 1 ≤ i ̸= j ≤ q. Consider the line

h = l−ci
=
〈0

0
1

 ,
 1
ci

di

〉 .
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We have (1, cj, dj) ∈ h, as  1
cj

dj

 =

 1
ci

di

+ (dj − di)

0
0
1

 ,
so three points on the line h, a contradiction. Therefore {ci : i = 1, . . . , q} = Fq.

Let f be the polynomial describing the map ci 7→ di for i = 1, ..., q. Then O = Oo(f).
We prove next that f satisfies the claimed properties. From (1, 0, 0) and (1, 1, 1) being
points of O it is immediate that f(0) = 0 and f(1) = 1. Consider the lines la,b of
PG(2, q): For a, b ∈ Fq the line la,b =

〈( a
b
1

)〉⊥
does not contain the point (0, 0, 1) and

for t ∈ Fq contains the point (1, t, f(t)) if and only if

a+ bt+ f(t) = 0.

So the equation f(x) + bx = −a has at most two solutions in Fq.
What remains to be shown is that there is exactly one element a for fixed b ∈ Fq such

that the equation f(x) + bx = −a has exactly one solution. Such lines are precisely the
tangents and there are exactly q+ 1 tangents overall, one of which is l∞. Suppose there
is an element b ∈ Fq such that for no a ∈ Fq the equation f(x) + bx = −a has exactly
one solution, e.g. no line la,b is a tangent for this fixed b. Then every a ∈ Fq has exactly
zero or two preimages under f(x) + bx, so |Fq| is even, a contradiction. Therefore, for
every b ∈ Fq, there is at least one element a ∈ Fq such that la,b is a tangent. As there
are only q tangents left to be accounted for, we have f(x) + bx is 2-to-1 for all b ∈ Fq.

Finally, for the converse, only the lines la for a ∈ Fq remain to be handled. For t ∈ Fq

the point (1, t, f(t)) is on la if and only if

a+ t = 0,

so only the points (1,−a, f(−a)) and (0, 0, 1) from O(f) are on la.

Notice that, in contrast to the even case, the polynomial f is not required to be
bijective, but has to be 2-to-1. Lastly, we give an example of a family satisfying the
conditions of Theorem 4.2.3, so that no concerns about the existence of the families
dealt with in the next subsection may arise. This is analogous to Example 2.1.16 about
the regular hyperoval and also provides an additional proof idea for that example.

4.2.4 Example. Take f(x) = x2 with q odd. We show that Oo(f) is an oval and thus
fb(x) = x2 + bx is 2-to-1 for all b ∈ F∗

q:

• A line la,b with a, b ∈ Fq contains a point (1, s, s2) with s ∈ Fq if and only if

a+ bs+ s2 = 0

holds. This quadratic equation has at most two solutions, so no such line contains
more than two points from Oo(f).
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• A line la with a ∈ Fq contains the point (1, s, s2) for s ∈ Fq if and only if

a+ s = 0.

They also contain the point (0, 0, 1), so those lines contain exactly two points
from Oo(f).

• The line l∞ is a tangent by construction.
As there are no three collinear points, Oo(f) is an oval.

4.2.2 Families of 2-to-1 Binomials
We now turn to the odd characteristic version of Subsection 4.1.2, characterizing specific
families of 2-to-1 binomials, which relate to (monomial) ovals. We specifically look at
the families (fb)b∈Fq with fb(x) = xe + bxd and fixed e ̸= d, where the binomial is 2-to-1
for all b ∈ F∗

q. The main result of this subsection is that in this situation we must have
either gcd(e, q − 1) = 2 and gcd(d, q − 1) = 1 or the other way round.

The primary idea consists in associating an oval-like structure O(e, d) to the ex-
ponents e and d and examining it using Lemma 4.1.2 to show that it actually is an
oval.
4.2.5 Definition. Let q be odd and 0 < e ̸= d. Define

O(e, d) := {(1, sd, se) : s ∈ Fq} ∪ {(0, 0, 1)}.

Note that O(e, d) is chosen exactly so that the 2-to-1 property corresponds to how
many points of O(e, d) lie on the lines la,b. For Lemma 4.1.2 to be effective, we need to
ensure that O(e, d) has the right number of points. Afterwards we collect some basic
facts about e and d before continuing to prove the main result of this subsection.
4.2.6 Lemma. Let q be odd and 0 < e ̸= d. Assume that fb(x) = xe + bxd is 2-to-1 for
all b ∈ F∗

q. Then |O(e, d)| = q + 1.
Proof. We need to prove that the points (1, sd, se) are actually distinct. For a contra-
diction, assume that there are distinct s, t ∈ Fq satisfying

sd = td and se = te,

so (
s

t

)d

= 1 =
(
s

t

)e

.

Now take b = −1, then f−1(0) = 0, f−1(1) = 0, and f−1
(

s
t

)
= 0. In particular, the

polynomial f−1 is not 2-to-1.
4.2.7 Lemma. Let q be odd and 0 < e ̸= d. Assume that xe + bxd is 2-to-1 for all
b ∈ F∗

q. Then gcd(e− d, q − 1) = 1. Also, gcd(e, q − 1) is even and gcd(d, q − 1) odd or
the other way round.
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Proof. We have

fb(x) = xd
(
xe−d + b

)
.

Now, for some primitive element ξ of F∗
q, choose b ∈ −

〈
ξe−d

〉
. Then xe−d = −b has

gcd(e− d, q− 1) solutions in F∗
q, so 0 has 1 + gcd(e− d, q− 1) preimages under the map

induced by fb. Since fb is 2-to-1, gcd(e− d, q − 1) = 1 follows.
As q − 1 is even, either e is even and d odd or the other way round.

A converse statement is also true: If fb(x) = xe + bx is 2-to-1 for some b ∈ F∗
q and

gcd(e− d, q − 1) = 1, then for some primitive element ξ of F∗
q the polynomials

(
ξi
)−e

fb

(
ξix
)

=
(
ξi
)−e

((
ξi
)e
xe +

(
ξi
)d
bxd

)
= xe +

(
ξd−e

)i
bxd

for i ∈ N are also 2-to-1. Then fb′ is 2-to-1 for all b′ ∈ F∗
q. However, not all e ̸= d with

gcd(e− d, q − 1) = 1, gcd(e, q − 1) = 2, and gcd(d, q − 1) = 1 define such families.

4.2.8 Theorem. Let q be odd and 0 < e ̸= d. Assume that fb(x) = xe + bxd is 2-to-1
for all b ∈ F∗

q. Then gcd(e, q − 1) = 2 and gcd(d, q − 1) = 1 or the other way round.

Proof. Lemma 4.2.7 implies that either gcd(e, q−1) or gcd(d, q−1) is even. Without loss
of generality (by multiplying the binomials by b−1 if necessary), assume that gcd(e, q−1)
is even. Set

h := gcd(e, q − 1) and m := gcd(d, q − 1).

Now we count the number of lines containing a specific number of points of O(e, d).
Let k equal the maximum number of collinear points of O(e, d). Consider the lines la,b

for a ∈ Fq and fixed b ∈ F∗
q first. As fb is 2-to-1, we have one tangent, q−1

2 bisecants and
q−1

2 external lines among those lines. So from b ∈ F∗
q we obtain (q−1)2

2 external lines,
q − 1 tangents, and (q−1)2

2 bisecants overall.
A point (1, td, te) for t ∈ Fq is on la,0 if and only if

a+ te = 0.

So, with a = 0 we have another tangent and a ∈ F∗
q yields q−1

h
lines containing h points

from O(e, d) as well as q − 1 − q−1
h

external lines.
The point (0, 0, 1) is always on la for a ∈ Fq and the point (1, td, te) for t ∈ Fq is on

la if and only if

a+ td = 0.

So, for a = 0 we get another bisecant and a ∈ F∗
q yields q−1

m
lines with exactly m + 1

points from O(e, d) and q − 1 − q−1
m

tangents.
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Finally, l∞ is another tangent. Overall, we have

τ0 = (q − 1)2

2 + q − 1 − q − 1
h

external lines. Lemma 4.1.2 implies

τ1 = (q + 1)2 − (q + 1)q +
k∑

i=2
(i2 − 2i)τi

= q + 1 +
k∑

i=2
(i2 − 2i)τi

and substituting τ0 and τ1 into ∑k
i=0 τi = q2 + q + 1 yields

q2 + q + 1 = τ0 + τ1 +
k∑

i=2
τi

= (q − 1)2

2 + q − 1 − q − 1
h

+ q + 1 +
k∑

i−2
(i2 − 2i+ 1)τi

= (q − 1)2

2 + 2q − q − 1
h

+
k∑

i=2
(i− 1)2τi.

(4.12)

We avoid giving an explicit expression for τ2, as it depends on both h and m. However,

k∑
i=2

(i− 1)2τi = (q − 1)2

2 + 1 + (h− 1)2 q − 1
h

+m2 q − 1
m

(4.13)

holds. Combining (4.12) and (4.13) then yields

q2 + q + 1 = (q − 1)2

2 + 2q − q − 1
h

+ (q − 1)2

2 + 1 + (h− 1)2 q − 1
h

+m(q − 1)

= q2 + (h2 − 2h)q − 1
h

+m(q − 1) + 2

= q2 + (h+m− 2)(q − 1) + 2,

leading to

0 = (h+m− 3)(q − 1).

As q − 1 ̸= 0, we must have h+m = 3 and thus h = 2 and m = 1, since h,m ∈ N and
h ≥ 2.

A similar proof in the even case for the main statement of Subsection 4.1.2 is also
feasible: From the remarks after Lemma 4.2.7 and Lemma 4.1.5 we get that xe + b′xd

is 2-to-1 for all b′ ∈ Fq, provided it is for a specific b ∈ Fq. Then the same line counting
arguments takes effect and forces gcd(e, q − 1) = gcd(d, q − 1) = 1.
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4.2.3 Segre’s Theorem and Application to 2-to-1 Binomials
Finally, we use Segre’s Theorem about ovals to show that the families (fb)b∈F∗

q
, where

fb(x) = xe + bxd is 2-to-1 for all b ∈ F∗
q, originate from the family x2 + bx, which we

examined in Example 4.2.4.
We are following [6, Section 9.7] for the definition of conics and Segre’s Theorem,

where also proofs for the statements we give can be found. As our focus has been
mainly on the even case, we omit the details.
4.2.9 Definition (Non-Singular Conic). A conic C is the set of points of PG(2, q)
satisfying a non-singular quadratic equation, that is,

C = {(x, y, z) ∈ PG(2, q) : ax2 + by2 + cz2 + fyz + gzx+ hxy = 0}

with a, b, c, f, g, h ∈ Fq such that no linear substitution involving x, y and z leads to an
equivalent equation in less than three variables.

Conics make up for simple examples for ovals. For odd characteristic though, Segre
showed the remarkable converse statement.
4.2.10 Theorem (Segre [43]). If q is odd, then any oval of PG(2, q) is a conic.

In the last subsection we proved that O(e, d) is an oval if fb(x) = xe + bxd is 2-to-1
for all b ∈ F∗

q. Now knowing that it is also a conic, we can infer more about e and d by
examining the associated non-singular quadratic equation.
4.2.11 Theorem. Let q be odd and let 0 < e ̸= d, such that fb(x) = xe + bxd is 2-to-1
for all b ∈ F∗

q. Then, assuming gcd(d, q − 1) = 1, we have e
d

≡ 2 mod q − 1, that is,
fb(x) can be traced back to x2 + bx using the substitution x 7→ x

1
d .

Proof. By Theorem 4.2.8 we can assume without loss of generality that gcd(e, q−1) = 2
and gcd(d, q − 1) = 1. Then

O(e, d) = O
(
e

d
, 1
)

=
{(

1, s, s e
d

)
: s ∈ Fq

}
∪ {(0, 0, 1)} =: O,

using the substitution x 7→ x
1
d . By Segre’s Theorem O is a conic, so let

G(x, y, z) := ax2 + by2 + cz2 + fyz + gzx+ hxy

with a, b, c, f, g, h ∈ Fq be the associated quadratic form.
Since (0, 0, 1) ∈ O, we have c = 0 and from (1, 0, 0) ∈ O it follows that a = 0. Letting

k be the least positive residue of e
d

mod q − 1, define

F (x) := G(1, x, xk) = bx2 + fxk+1 + gxk + hx ∈ Fq[x].

Note that by Theorem 4.2.8 gcd(k, q − 1) = 2, as O = O(k, 1) holds.
Then F (t) = 0 for all t ∈ Fq, so degF = q or degF = −∞. In the first case, we

must have k = q − 1. Unless q = 3, we would have gcd(k, q − 1) = q − 1 ̸= 2. If q = 3,
we have k = 2 and are done.
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4 Application: 2-to-1 Binomials

Thus only the case F (x) = 0 remains. As G is non-singular, not all coefficients
vanish. This rules out k ≥ 3, as all monomials in F would have a different degree. And
finally, gcd(1, q − 1) = 1, so k = 1 cannot happen either. We therefore conclude that
k = 2.
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